K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2018

A B x y O C D M

a) Xét \(\Delta\)CAO và \(\Delta\)OBD: ^CAO=^OBD=900; ^AOC=^BDO (Cùng phụ ^BOD)

=> \(\Delta\)CAO ~ \(\Delta\)OBD (g.g) => \(\frac{AC}{BO}=\frac{AO}{BD}\Rightarrow AO.BO=AC.BD\)

\(\Rightarrow\frac{1}{2}AB.\frac{1}{2}AB=AC.BD\Leftrightarrow\frac{1}{4}AB^2=AC.BD\)

\(\Leftrightarrow AB^2=4.AC.BD\)(đpcm)

b) Ta có: \(\Delta\)CAO ~ \(\Delta\)OBD (cmt) => \(\frac{AC}{OB}=\frac{OC}{OD}\) hay \(\frac{AC}{OA}=\frac{OC}{OD}\) (Do OA=OB)

=> \(\frac{AC}{OC}=\frac{OA}{OD}\)=> \(\Delta\)CAO ~ \(\Delta\)COD (Cạnh huyền cạnh góc vuông)

=> ^ACO=^OCD hay ^ACO=^MCO => \(\Delta\)CAO=\(\Delta\)CMO (Cạnh huyền góc nhọn)

=> AC=CM (đpcm).

6 tháng 4 2019

O A B C D I M H K

6 tháng 4 2019

Xét \(\Delta OAC\)và \(\Delta DBO\)có :

\(\widehat{CAO}=\widehat{DBO}\left(=90^o\right)\)\(\widehat{COA}=\widehat{ODB}\)( cùng phụ \(\widehat{DOB}\))

\(\Rightarrow\)\(\Delta OAC\)\(\Delta DBO\)( g . g )

\(\Rightarrow\)\(\frac{OA}{BD}=\frac{AC}{BO}\) \(\Rightarrow\)OA . OB = BD . AC \(\Rightarrow\)AB2 = 4BD . AC

b) \(\Delta OAC\)\(\Delta DBO\)(g.g) \(\Rightarrow\)\(\frac{AC}{AO}=\frac{OC}{OD}\)

xét \(\Delta OAC\)và \(\Delta DOC\)có : \(\frac{AC}{AO}=\frac{OC}{OD}\)\(\widehat{CAO}=\widehat{COD}=90^o\)

\(\Rightarrow\)\(\Delta OAC\)\(\Delta DOC\)(c.g.c) \(\Rightarrow\)\(\widehat{ACO}=\widehat{OCD}\)

xét \(\Delta OAC\)và \(\Delta MCO\)có : \(\widehat{ACO}=\widehat{OCD}\); CO ( chung )

\(\Rightarrow\)\(\Delta ACO=\Delta MCO\left(ch-gn\right)\)\(\Rightarrow\)CA = CM ; OA = OM ; 

c) OC là đường trung trực AM \(\Rightarrow\)OC \(\perp\)AM

Mặt khác : OA = OB = OM \(\Rightarrow\)\(\Delta AMB\)vuông tại M

\(\Rightarrow\)OC // BM

gọi gđ BM với AC là I

\(\Delta ABI\)có OC đi qua trung điểm AB và OC // BI \(\Rightarrow\)IC = AC

gọi K là gđ BC với MH

MH // AI \(\Rightarrow\)\(\frac{MK}{IC}=\frac{BK}{BC}=\frac{KH}{AC}\) \(\Rightarrow\)BK = KH 

\(\Rightarrow\)BC đi qua trung điểm MH

d) tứ giác ABDC là hình thang vuông \(\Rightarrow\)\(S_{ABDC}=\frac{1}{2}.\left(AC+BD\right).AB\)

Ta có : \(AC+BD\ge2\sqrt{AC.BD}=AB\)

\(\Rightarrow\)\(S_{ABDC}=\frac{1}{2}.\left(AC+BD\right).AB\ge\frac{1}{2}.AB^2\)

Dấu " = " xảy ra \(\Leftrightarrow\)AC = BD = \(\frac{AB}{2}=OA\)

Vậy C thuộc Ax và cách A 1 khoảng bằng OA

10 tháng 4 2018

a, \(\Delta CAO~\Delta OBD\left(g-g\right)\)

\(\Rightarrow\frac{OA}{BD}=\frac{AC}{OB}\Rightarrow\frac{AB}{2BD}=\frac{2AC}{AB}\Rightarrow AB^2=4.AC.BD\)

b, \(\Delta CAO~\Delta COD\left(c-g-c\right)\Rightarrow\widehat{ACO}=\widehat{MCO}\)

\(\Delta CAO=\Delta CMO\left(ch-gn\right)\Rightarrow AC=CM\)

c, Gọi giao điểm MH và BC là N

Tương tự b, BD=MD 

Do \(CA//BD\Rightarrow\frac{CA}{BD}=\frac{CN}{NB}\Rightarrow\frac{CN}{NB}=\frac{CM}{MD}\)

\(\Rightarrow MN//BD\Rightarrow NH//BD\Rightarrow\frac{NH}{BD}=\frac{NA}{BD}\Rightarrow\frac{NH}{BD}=\frac{CN}{NB}\Rightarrow\frac{NH}{BD}=\frac{NM}{BD}\)

\(\Rightarrow NM=NH\)

d, Ta có: \(S_{ABCD}=\frac{\left(CA+BD\right)AB}{2}\ge\frac{AC.BD.AB}{2}=\frac{\frac{AB^2}{4}.AB}{2}=\frac{AB^3}{8}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}AC=BD\\AC.BD=\frac{AB^2}{4}\end{cases}\Rightarrow}AC=BD=\frac{AB}{2}\)

OK, GOOD LUCK!!!

10 tháng 4 2018

Lần sau làm câu d thôi

24 tháng 6 2021

Làm hộ e chắc câu 1 thôi ạ, e lm đc câu 2 r ạ!

4 tháng 2 2020

A B O C D x y M N H G Q Q' K

A, tam giác AOC vuông tại A 

=> góc ACO + góc COA = 90 (đl)    (1)

có góc COA + góc COD + góc DOB = 180 

có góc COD = 90 (gt)

=> góc COA + góc DOB = 90    ; (1)

=> góc ACO = góc DOB 

xét tam giác ACO và tam giác BOD có : góc CAO = góc OBD = 90 (gt)

=> tam giác ACO ~ tam giác BOD (g-g)

=> AC/BO = AO/BD 

=> AO.BO = AC.BD

Có O là trung điểm của AB (gt) => AO = OB = 1/2AB

=> 1/2.AB.1/2.AB = AC.BD

=> 1/4AB^2 = AC.BD

=> AB^2 = 4AC.BD

b,  tam giác CAO ~ tam giác OBD (Câu a)

=> AC/OB = OC/OD

OA = OB (Câu a)

=> AC/OA = OC/OD 

=> AC/OC = OA/OD 

=> tam giác ACOO ~ tam giác OCD 

=> góc ACO = góc OCD

mà CO nằm giữa CA và CD

=> CO là phân giác của góc ACD (đn)

tự chứng minh AC = CM

c,  xét tam giác AMB có : MO là đường trung tuyến (O là trung điểm của AB)

MO = AB/2 (OM = OA do tam giác AOC = tam giác MOC(câu b) và OA = AB/2)

=> tam giác AMB vuông tại M (định lí đảo)

=> AM _|_ NB                                                 (1)

xét tam giác ACM có : AC = CM (Câu b)

=> tam giác ACM cân tại C (đn) MÀ có CO là phân giác

=> CO là đường cao của tam giác ACM (đl)

=> CO _|_AM                                  (2)

(1)(2) => CO // BN (tc)

xét tam giác BAN có : O là trung điểm của AB (gt)

=> C là trung điểm của AN (tc)

d, gọi BC cắt MH tại Q 

có MH // AN do cùng _|_ BA 

xét tam giác BCN và tam giác BCA 

=> QM/CN = BQ/BC và QH/CA = BQ/BC (hệ quả)

có CN=CA (câu c)

=> MQ = QH ; Q nằm giữa H và M

=> Q là trung điểm của HM (đn)

kẻ AM cắt BD tại G; Kẻ OK  _|_ AB (K nằm cùng 1 nửa mp bờ AB chứa Ax, By)

dài chẳng làm nữa