Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chu vi hình chữ nhật là :
\(\left(10+6\right)\times2=32\left(cm\right)\)
Do hình vuông có chu vi bằng chu vi hình chữ nhật ấy nên chu vi của hình vuông ABCD là 32 cm
Cạnh hình vuông là :
\(32\div4=8\left(cm\right)\)
b) Do M là điểm chính giữa cạnh AB nên \(AM=MB=\frac{AB}{2}=4\left(cm\right)\)
Ta có \(S_{\Delta ADM}=\frac{AD\times AM}{2}=\frac{8\times4}{2}=16\left(cm^2\right)\)
Do N là điểm chính giữa cạnh BC nên \(BN=NC=\frac{BC}{2}=4\left(cm\right)\)
\(S_{\Delta ABN}=\frac{AB\times BN}{2}=\frac{8\times4}{2}=16\left(cm^2\right)\)
Xét \(\Delta ABN\)và \(\Delta AMN\)có chung đường cao hạ từ N xuống cạnh đáy
Mà đáy AM của \(\Delta AMN\) \(=\frac{1}{2}\)đáy AB của \(\Delta ABN\)
\(\Rightarrow S_{\Delta AMN}=\frac{1}{2}S_{\Delta ABN}=\frac{1}{2}\times16=8\left(cm^2\right)\)
Kẻ \(NO\perp AD\)
Xét tứ giác ABNO có \(\widehat{OAB}=\widehat{ABN}=\widehat{NOA}=90^o\)
\(\Rightarrow\) ABNO là hình chữ nhật
\(\Rightarrow NO=AB=8\left(cm\right)\)
\(S_{\Delta AND}=\frac{NO\times AD}{2}=\frac{8\times8}{2}=32\left(cm^2\right)\)
Vậy ...
Giải
Chiều dài hình chữ nhật ABCD là
66:(1+2)x2=44(cm)
Chiều rộng hình chữ nhật ABCD là:
66-44=22(cm)
Diện tích hình chữ nhật ABCD là:
44x22=968(cm2)
Độ dìa đáy hình tam giác ADM là:
44:2=22(cm)
Diện tích hình tam giác ADM là
22x22:2=242(cm2)
C,Bótay.com
học tốt!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
k cho mình nha
Lời giải
a) Tính diện tích hình thang BHDA
Do E là điểm chính giữa cạnh AB nên EA = AB/2 = 5cm.
Do H là điểm chính giữa cạnh BC nên BH = BC/2 = 5cm.
Do đó, đáy lớn của hình thang BHDA là BH + AD = 5 + 10 = 15cm.
Do hình thang BHDA là hình thang cân có đáy lớn bằng đáy bé nên diện tích của hình thang BHDA là:
S = 1/2 * (15 + 15) * 10 = 112.5cm^2b) Tính diện tích tam giác AHE và diện tích tam giác AHD
Do E là điểm chính giữa cạnh AB nên AE = AB/2 = 5cm.
Do H là điểm chính giữa cạnh BC nên BH = BC/2 = 5cm.
Do đó, diện tích tam giác AHE là:
S = 1/2 * AE * BH = 1/2 * 5 * 5 = 12.5cm^2Tương tự, diện tích tam giác AHD là 12.5cm^2.
Kết luận
- Diện tích hình thang BHDA = 112.5cm^2
- Diện tích tam giác AHE = Diện tích tam giác AHD = 12.5cm^2
\(a,\) Ta có \(BH=HC=AE=EB=\dfrac{1}{2}AB=\dfrac{1}{2}BC=\dfrac{1}{2}\cdot10=5\left(cm\right)\)
\(S_{BHDA}=S_{ABCD}-S_{CHD}=AD^2-\dfrac{1}{2}CD\cdot CH\\ =100-\dfrac{1}{2}\cdot10\cdot5=75\left(cm^2\right)\)
\(b,S_{AHD}=S_{BHDA}-S_{AHB}=75-\dfrac{1}{2}\cdot10\cdot5=50\left(cm^2\right)\\ S_{AHE}=S_{AHB}-S_{HBE}=25-\dfrac{1}{2}\cdot5\cdot5=\dfrac{25}{2}\left(cm^2\right)\\ \Rightarrow S_{AHD}>S_{AHE}\)