K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2018

M' A B C D F N M a) kẻ BM' =BM 

=> ∆BMM' là tam giác đều => MM" = BM 

=> AB là đường cao cũng là đường trung trực 

=>AM=\(\frac{1}{2}\)MM' = \(\frac{1}{2}\)BM

Áp dụng định lí py-ta-go vào tam giác ABM Vuông có :

BM2 = AB2 + AM2

<=> (2AM)2 = AB2 + AM2 

<=> 4AM2 = AM2 - AB2 

<=> 3AM2 = AB2 

<=> AM = \(\frac{AB^2}{3}\) <=> AM =\(\sqrt{\frac{AB^2}{3}}\)\(\sqrt{\frac{a^2}{3}}\)=\(\frac{a}{\sqrt{3}}\)

<=> BM = \(2\sqrt{\frac{a}{3}}\)\(\frac{2a}{\sqrt{3}}\)

b) ta có 

AB2 = FB . BM

=> FB = \(\frac{AB^2}{BM}\) => FB = a\(\frac{2a}{\sqrt{3}}\)\(\frac{a\sqrt{3}}{2}\)

còn tính những cái còn lại áp dụng hệ thức lượng  mà tính

23 tháng 6 2018

a) Tam giác AMB vuông tại A, có góc ABM=30 độ

nên BM=2BM

(2AM)^2-AM^2=AB^2

=> 3AM^2=a^2,suy ra AM= \(\frac{a\sqrt{3}}{3}\)

b) Góc MAF= góc ABF= 30 độ( cùng phụ với góc FAB).Từ đó ta có:

Tự làm xong k cho em nha!

9 tháng 12 2021

Xét △AND và △AMB có:

∠NAD = ∠MAB (cùng phụ ∠DAM)

AD=AB (ABCD là hv)

∠ADN = ∠ABM (=90*)

 △AND = △AMB (g.c.g)

=>AM=AN mà ∠MAN = 90*=>△AMN vuông cân tại A

Theo định lí Py-ta-go có: 

AM2+AN2 = MN2 => 2AM2 = MN2 => \(\dfrac{AM^2}{MN^2}\)=\(\dfrac{1}{2}\) =>\(\dfrac{AM}{MN}\)=\(\dfrac{\sqrt{2}}{2}\)

 

NV
12 tháng 1

a.

DO ABCD là hình vuông \(\Rightarrow\widehat{ACD}=45^0\)

\(\Rightarrow\widehat{ACD}=\widehat{EBN}\)

Mà \(\widehat{ACD}\) và \(\widehat{EBN}\) cùng chắn EN

\(\Rightarrow\) Tứ giác BENC nội tiếp

\(\Rightarrow\widehat{BEN}+\widehat{BCN}=180^0\)

\(\Rightarrow\widehat{BEN}=180^0-\widehat{BCN}=180^0-90^0=90^0\)

\(\Rightarrow NE\perp BM\) tại E

b.

Tương tự ta có tứ giác ABFM nội tiếp (\(\widehat{MAF}=\widehat{MBF}=45^0\) cùng chắn MF)

\(\Rightarrow\widehat{BFM}+\widehat{BAM}=180^0\)

\(\Rightarrow\widehat{BFM}=90^0\Rightarrow MF\perp BN\)

\(\Rightarrow I\) là trực tâm của tam giác BMN

\(\Rightarrow BI\perp MN\)

NV
12 tháng 1

c.

Gọi H là giao điểm BI và MN

Do E và F cùng nhìn MN dưới 1 góc vuông 

\(\Rightarrow\) Tứ giác EFMN nội tiếp

\(\Rightarrow\widehat{EMN}+\widehat{EFN}=180^0\)

Mà \(\widehat{EFN}+\widehat{EFB}=180^0\)

\(\Rightarrow\widehat{EMN}=\widehat{EFB}\)

Lại có tứ giác ABFM nội tiếp (A và F cùng nhìn BM dưới 1 góc vuông)

\(\Rightarrow\widehat{EFB}=\widehat{AMB}\) (cùng chắn AB)

\(\Rightarrow\widehat{EMN}=\widehat{AMB}\)

\(\Rightarrow\Delta_VAMB=\Delta_VHMB\left(ch-gn\right)\)

\(\Rightarrow AM=HM\)

Đồng thời suy ra \(AB=BH\Rightarrow BH=BC\) (do AB=BC)

Theo Pitago: \(\left\{{}\begin{matrix}HN=\sqrt{BN^2-BH^2}\\CN=\sqrt{BN^2-BC^2}\end{matrix}\right.\) \(\Rightarrow CN=HN\)

\(\Rightarrow AM+CN=MH+NH=MN\)

\(\Rightarrow MD+DN+MN=MD+DN+AM+CN=AD+CD=2a\)

Pitago: \(MN^2=DM^2+DN^2\ge\dfrac{1}{2}\left(DM+DN\right)^2\Rightarrow MN\ge\dfrac{\sqrt{2}}{2}\left(DM+DN\right)\)

\(\Rightarrow2a-\left(DM+DN\right)\ge\dfrac{\sqrt{2}}{2}\left(DM+DN\right)\)

\(\Rightarrow2a\ge\left(\dfrac{2+\sqrt{2}}{2}\right)\left(DM+DN\right)\ge\left(2+\sqrt{2}\right).\sqrt{DM.DN}\)

\(\Rightarrow DM.DN\le\left(6-4\sqrt{2}\right)a^2\)

\(\Rightarrow S_{MDN}=\dfrac{1}{2}DM.DN\le\left(3-2\sqrt{2}\right)a^2\)

Dấu "=" xảy ra khi \(DM=DN=\left(\sqrt{6}-\sqrt{2}\right)a\)