Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác OEB và tam giác OMC có:
OB = OC (Do ABCD là hình vuông)
EB = MC (gt)
\(\widehat{OCM}=\widehat{OBE}=45^o\)
\(\Rightarrow\Delta OEB=\Delta OMC\left(c-g-c\right)\Rightarrow OE=OM;\widehat{EOB}=\widehat{MOC}\)
Ta có:
\(\widehat{MOC}+\widehat{MOB}=\widehat{BOC}=90^o\Rightarrow\widehat{EOM}=\widehat{EOB}+\widehat{MOB}=90^o\)
Vậy tam giác OEM vuông cân.
P/s: 2 câu dưới mai làm cho :v
b) Ta luôn có: \(\Delta CMN~\Delta BMA\left(g-g\right)\Rightarrow\frac{CM}{BM}=\frac{MN}{MA}\)
Lại có CM = BE, mà AB = BC nên AE = MB
Vậy thì \(\frac{CM}{MC}=\frac{EB}{AE}\)
Xét tam giác ABN có \(\frac{AE}{EB}=\frac{AM}{MN}\), áp dụng định lí Ta-let đảo, ta có EM // BN
c) Giả sử OM cắt BN tại H'. Khi đó ta có \(\widehat{OME}=\widehat{MH'B}=45^o\)
\(\Rightarrow\Delta OMC~\Delta H'MB\left(g-g\right)\Rightarrow\frac{MC}{BM}=\frac{OC}{H'B}\)
Xét tam giác OMB và tam giác CMH' có:
\(\frac{MC}{BM}=\frac{OC}{H'B}\left(cmt\right)\)
\(\widehat{OMB}=\widehat{CMH'}\) ( Hai góc đối đỉnh)
\(\Rightarrow\Delta OMB~\Delta CMH'\left(c-g-c\right)\Rightarrow\widehat{CH'M}=\widehat{OBM}=45^o\)
Vậy thì \(\widehat{BH'C}=\widehat{BH'M}+\widehat{MH'C}=45^0+45^0=90^0\)
Hay \(CH'\perp BN\)
=> H trùng H' => O, M, N thẳng hàng
Gọi AM cắt DE tại I
Theo tính chất hình chữ nhật ADHE : \(\widehat{E_1}=\widehat{HAC}=\widehat{MBA};\widehat{A_1}=\widehat{D_1}=\widehat{AHE}=\widehat{MCA}\)
\(\Rightarrow\widehat{A_1}=\widehat{ACM}\Rightarrow\Delta ACM\)cân tại M \(\Rightarrow MA=MC\)(*)
Do \(\Delta AID\)vuông tại I suy ra
\(\widehat{DAM}+\widehat{D_1}=90^0\Leftrightarrow\widehat{DAM}+\widehat{DAH}=90^0\left(1\right)\)
\(\widehat{ABM}+\widehat{DAH}=90^0\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{DAM}=\widehat{ABM}\)
\(\Rightarrow\Delta ABM\)cân tại M \(\Rightarrow MA=MB\)(**)
Từ (*);(**) suy ra MB=MC hay M là trung điểm BC . Do MF//AC suy ra
\(\widehat{MFC}=\widehat{ACF}\)
Mà
\(\widehat{ACF}=\widehat{MCF}\Rightarrow\widehat{MFC}=\widehat{MCF}\Rightarrow\Delta MFC\)cân tại M suy ra MC=MF
Mà MB=MC suy ra \(\Delta BFC\) có FM là trung tuyến \(FM=\frac{1}{2}BC\Rightarrow\) \(\Delta BFC\)vuông tại F hay \(BF\perp CF\left(đpcm\right)\)
GIẢI:
a) Xét Δ ABC và Δ AED, ta có :
(đối đỉnh)
AB = AD (gt)
AC = AD (gt)
=> Δ ABC = Δ AED (hai cạnh góc vuông)
=> BC = DE
Xét Δ ABD, ta có :
(Δ ABC vuông tại A)
=> AD AE
=>
=> Δ ABD vuông tại A.
mà : AB = AD (gt)
=> Δ ABD vuông cân tại A.
=>
cmtt :
=>
mà : ở vị trí so le trong
=> BD // CE
b) Xét Δ MNC, ta có :
NK MC = > NK là đường cao thứ 1.
MH NC = > MH là đường cao thứ 2.
NK cắt MH tại A.
=> A là trực tâm. = > CA là đường cao thứ 3.
=> MN AC tại I.
mà : AB AC
=> MN // AB.
c) Xét Δ AMC, ta có :
(đối đỉnh)
(Δ ABC = Δ AED)
=> (cùng phụ góc ABC)
=> Δ AMC cân tại M
=> AM = ME (1)
Xét Δ AMI và Δ DMI, ta có :
(MN AC tại I)
IM cạnh chung.
mặt khác : (so le trong)
(đồng vị)
mà : (cmt)
=>
=> Δ AMI = Δ DMI (góc nhọn – cạnh góc vuông)
=> MA = MD (2)
từ (1) và (2), suy ta : MA = ME = MD
ta lại có : ME = MD = DE/2 (D, M, E thẳng hàng)
=>MA = DE/2.