K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2018

Fan BTS à mk cx thik nhưng ko phải army :))

19 tháng 12 2017

bn tựu vẽ hk nha

a, dễ cm tứ giác ABCD là hình thang

ta có AD//MO//CB(cùng vuông góc vs DC) 

    A0=B0  

từ đây suy ra DM=MC

B, TỪ M KẺ MH VUÔNG GÓC VS AB

TA CÓ GÓC DAM=GÓC AMO( do AD//MO) (1)

LẠI CÓ GÓC AMO=GÓC MAO( do  MO=AO)  (2)

TỪ (1)(2) SUY RA GÓC DAM=GÓC MAO

                   LẠI CÓ GÓC D=GÓC MHA=90

SUY RA TAM GIAC DMA=TAM GIAC HMA

SUY RA AD=AH

tự BC=HB

TỪ ĐÂY SUY RA AD+CB=AH+BH=AB KO ĐỔI

C, TA CÓ MH=DM=MC(CMT)

LẠI CÓ MHVUOONG GÓC VS AB 

SUY RA DƯỜNG TRÒN CD TX VS AB

D, TRONG HT VUÔNG ABCD CÓ DC<=AB

SUY RA  SABCD=\(\frac{\left(AD+CB\right).DC}{2}=\frac{AB.CD}{2}< =\frac{AB^2}{2}\)

DẤU = XẢY RA KHI M NẰM CHÍNH GIỬA CUNG AB

16 tháng 8 2016

A B D C M

1. Ta có  AD // OM // BC ; OA = OB

=> OM là đường trung bình của hình thang ABCD => M là trung điểm CD => MC = MD

2. Vì OM là đường trung bình của hình thang ABCD nên : \(OM=\frac{AD+BC}{2}\Rightarrow AD+BC=2OM\)không đổi. 

3. Dễ thấy M là tâm của đường tròn đường kính CD vì MC = MD

Lại có AD vuông góc với MD => đpcm

4. Ta có : \(S_{ABCD}=\frac{1}{2}.\left(AD+BC\right).CD=OM.CD\)

Vì OM không đổi nên S.ABCD lớn nhất <=> CD lớn nhất <=> CD = AB

Vậy max (S.ABCD) = OM . AB = R.(2R) = 2R2 với R = AB/2

11 tháng 2 2017

ok

7 tháng 8 2018

a, Vẽ tiếp tuyến tại C cắt đường AB ở P. Phân giác C P B ^  cắt OC ở I. Vẽ đường tròn tâm I bán kính IC, đó là đường tròn cần tìm

b, Do  A C B ^ = 90 0 nên M C N ^ = 90 0

=> MN là đường kính của (I) => ĐPCM

c, Chứng minh được MN//AB nên ID ^ MN => M D ⏜ = N D ⏜ hay CD là tia phân giác  A C B ^ => Đpcm

28 tháng 1 2019

A C B D O M S T L K E F

Nhận xét: Tứ giác ABCD nội tiếp đường tròn đường kính AC vì ^ABC=^CDA=900. Gọi tâm của đường tròn này là O. Khi đó thì O chính là trung điểm đoạn AC. Ta thấy M là 1 điểm chung của (S) và (T), đồng thời là trung điểm BD nên M nằm trên trung trực BD. Gọi giao điểm thứ hai của (S) và (T) là L. Ta đi chứng minh L cũng nằm trên trung trực BD. Thật vậy:

Từ M kẻ MK vuông góc với đường thẳng ST. Gọi E,F lần lượt là hình chiếu của S,T lên MA,MC.

Khi đó các tứ giác KSEM, KTMS nội tiếp => ^EKF = ^MKE + ^MKF = ^MSE + ^MTF = (^ASM + ^CTM)/2

Ta thấy AC là tiếp tuyến chung của (S) và (T) nên ^MAC = ^ASM/2; ^MCA = ^CTM/2

Từ đó: ^EKF = ^MCA + ^MAC = ^EOA + ^FOC (Chú ý tứ giác MEOF là hbh) = 1800 - ^EOF

Suy ra tứ giác KEOF nội tiếp => ^EKO = ^EFO = ^MAC = ^MSE (=^ASM/2) = ^EKM

Mà M và O nằm cùng phía so với EK nên tia KM,KO trùng nhau hay O,M,K thẳng hàng 

Mặt khác: (S) và (T) cắt nhau tại M và L nên ML vuông góc ST. Do MK vuông góc ST nên M,K,L thẳng hàng

Vì vậy 4 điểm O,M,K,L thẳng hàng. Lại có OM là trung trực của BD => ML cũng là trung trực BD

Hay 2 giao điểm của (S) và (T) cùng nằm trên đường trung trực của BD (đpcm).