Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Con tham khảo tại link dươi đây nhé:
Câu hỏi của Trần Thị Vân Ngọc - Toán lớp 8 - Học toán với OnlineMath
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét ∆ OAD có: OE=AE; OE=FD => EF là đtb của ∆ OAD => EF=1/2AD=1/2BC (1) và EF//AD
Ta có ABCD là hình thang cân => OCDˆ=ODCˆOCD^=ODC^=60 độ ( tự lập luận)
=> ∆ ODC đều có CF là đường trung tuyến đồng thời là đường cao => CF⊥⊥BD
∆BFC vuông tại F có FG là đường trung tuyến => FG=BG=CG=BC/2( theo t/c đường trung tuyến trong ∆ vuông) (2)
Chứng minh tương tự: EG=BC/2 (3)
Từ (1) ; (2) và (3) => FG=EF=EG => ∆ EFG đều
Nhấn đúng cho mình nha ^3^
Đây là câu trả lời đầy đủ của mình
Hãy ấn đúng cho mình nha các bạn ^3^
a: AB=DC
DC=CE
Do đó: AB=CE
Xét tứ giác ABEC có
AB//EC
AB=CE
Do đó: ABEC là hình bình hành
b: Xét ΔBDE có
BC là trung tuyến
BC là đường cao
Do đó: ΔBDE cân tại B(1)
Xét ΔBDE có
BC là trung tuyến
\(BC=\dfrac{1}{2}DE\)
Do đó: ΔBDE vuông tại B(2)
Từ (1),(2) suy ra ΔBDE vuông cân tại B
c:
ABCD là hình vuông
=>AC=BD và AC vuông góc với BD tại trung điểm của mỗi đường
=>AC vuông góc BD tại O và O là trung điểm chung của AC và BD
=>OA=OB=OC=OD
Xét ΔBDE có
C,F lần lượt là trung điểm của DE,BE
Do đó: CF là đường trung bình
=>CF//BD và \(CF=\dfrac{BD}{2}\)
=>CF//BO và CF=BO
Xét tứ giác BOCF có
BO//CF
BO=CF
Do đó: BOCF là hình bình hành
mà BO=CO
nên BOCF là hình thoi
Hình thoi BOCF có \(\widehat{OBF}=90^0\)
nên BOCF là hình vuông
d: Xét ΔBDE có
BC,DF là trung tuyến
BC cắt DF tại I
Do đó: I là trọng tâm của ΔBDE
mà O là trung điểm của BD
nên E,I,O thẳng hàng
Xét ΔIDE có
IC là đường cao, là đường trung tuyến
nên ΔIDE cân tại I
=>ID=IE
Xét ΔBDE có
I là trọng tâm
EO là đường trung tuyến
Do đó: \(\dfrac{EI}{EO}=\dfrac{2}{3}\)
=>\(OE=\dfrac{3}{2}EI=\dfrac{3}{2}DI\)
Mình cảm ơn ạ.