Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D F E M
Xét tam giác vuông là tam giác BEC và tam giác DCF có CD = BC , BE = CF = 1/2a
=> Tam giác BEC = tam giác DCF (hai cạnh góc vuông)
=> góc CDF = góc BCE mà góc CDF + góc DFC = 90 độ
=> góc ECF + góc DFC = 90 độ hay góc DMC = 90 độ => CE vuông góc DF
Ta chứng minh được tam giác MDC đồng dạng tam giác CDF (g.g)
Áp dụng định lí Pytago có \(DF=\sqrt{CD^2+FC^2}=\sqrt{a^2+\frac{a^2}{4}}=\frac{a\sqrt{5}}{2}\)
\(S_{CDF}=\frac{1}{2}CD.CF=\frac{1}{2}a.\left(\frac{a}{2}\right)=\frac{a^2}{4}\)
Suy ra \(\frac{S_{MDC}}{S_{CDF}}=\left(\frac{CD}{DF}\right)^2=\left(\frac{a}{\frac{a\sqrt{5}}{2}}\right)^2=\left(\frac{2}{\sqrt{5}}\right)^2=\frac{4}{5}\)
\(\Rightarrow S_{MDC}=\frac{4}{5}S_{CDF}=\frac{4}{5}.\frac{a^2}{4}=\frac{a^2}{5}\)
A B C D E F N
a) Xét tam giác vuông ABC, theo Pitago ta có: \(NC^2=NB^2+BC^2=x^2+a^2\)
Xét tam giác vuông NCF, chiều cao CB: Áp dụng hệ thức lượng ta có : \(NF=\frac{NC^2}{NB}=\frac{x^2+a^2}{x}\)
AN = a - x ; \(\frac{EA}{BC}=\frac{AN}{NB}\Rightarrow EA=\frac{a-x}{x}.a=\frac{a^2-ax}{x}\)
\(AF=AN+NF=a-x+\frac{a^2+x^2}{x}=\frac{ax+a^2}{x}\)
Vậy nên \(S_{ACEF}=S_{EAF}+S_{CAF}=\frac{1}{2}.AF.EA+\frac{1}{2}AF.BC\)
\(=\frac{1}{2}.\frac{ax+a^2}{x}.\left(\frac{a^2-ax}{x}+a\right)=\frac{1}{2}.\frac{ax+a^2}{x}.\frac{a^2}{x}=\frac{a^4+a^3x}{2x^2}\left(đvdt\right)\)
b) Ta có \(\frac{a^4+a^3x}{2x^2}=3a^2\Rightarrow a^2+ax-6x^2=0\)
\(\Rightarrow\left(a-2x\right)\left(a+3x\right)=0\)
Do a, x > 0 nên a = 2x hay N là trung điểm AB.
Câu hỏi của Vũ Huy Hiệu - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
b: MD*MC=MH*DC=2*a
a: Xet ΔBEC vuông tại B và ΔCFD vuông tại C có
BE=CF
BC=CD
=>ΔBEC=ΔCFD
=>góc BEC=góc CFD
=>góc CFD+góc FCM=90 độ
=>CE vuông góc BD
Xét ΔDMC vuông tại D và ΔCBE vuông tại B có
góc MCD=góc BEC
=>ΔDMC đồng dạng với ΔCBE
\(S_{CBE}=\dfrac{1}{2}\cdot S_{BAC}=\dfrac{1}{4}\cdot S_{ABCD}\)
ΔDMC đồng dạng với ΔCBE
=>\(\dfrac{S_{DMC}}{S_{CBE}}=\left(\dfrac{DC}{CE}\right)^2=\left(\dfrac{2\cdot BE}{\sqrt{\left(2\cdot BE\right)^2+BE^2}}\right)^2=\left(\dfrac{2}{\sqrt{5}}\right)^2=\dfrac{4}{5}\)
=>\(S_{DMC}=\dfrac{4}{5}\cdot S_{CBE}=\dfrac{4}{5}\cdot\dfrac{1}{4}\cdot S_{ABCD}=\dfrac{1}{5}\cdot S_{ABCD}\)