
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a/ Xét \(\Delta ABD,\Delta ACD\)có:
\(AD\)(chung)
\(\widehat{BAD}=\widehat{CAD}\)
\(AB=AC\)
\(\Rightarrow\Delta ABD=\Delta ACD\)
\(\Rightarrow DB=DC\)
b/ Theo câu a thì ta có: \(\Rightarrow\Delta ABD=\Delta ACD\)
\(\Rightarrow\widehat{ADB}=\widehat{ADC}=\frac{180^o}{2}=90^o\)
\(\Rightarrow AD\perp BC\)
c/ Gọi M, N là giao điểm của AE với BF và BC
Xét \(\Delta BCF,\Delta ECA\) có
\(CE=CB\)
\(\widehat{ECA}=\widehat{BCF}=90^o+\widehat{BCA}\)
\(CA=CF\)
\(\Rightarrow\Delta BCF=\Delta ECA\)
\(\Rightarrow\widehat{FBC}=\widehat{AEC}\)
Mà \(\widehat{BNM}=\widehat{ENC}\)
\(\Rightarrow\widehat{BMN}=\widehat{ECN}=90^o\)
\(\Rightarrow EA\perp FB\)

1/ Ta có hình vẽ:
a/ Xét tam giác OAD và tam giác OBD có:
OD: cạnh chung
\(\widehat{AOD}\)=\(\widehat{BOD}\) (GT)
OA = OB (GT)
Vậy tam giác OAD = tam giác OBD (c.g.c)
=> DA = DB (2 cạnh tương ứng)
b/ Ta có: tam giác OAD = tam giác OBD (câu a)
=> \(\widehat{ODA}\)=\(\widehat{ODB}\) (2 góc tương ứng)
Mà \(\widehat{ODA}\) + \(\widehat{ODB}\) = 1800 (kề bù)
=> \(\widehat{ODA}\)=\(\widehat{ODB}\) = \(\frac{1}{2}\)1800 = 900
=> OD \(\perp\)AB
Vậy OD vuông góc với AB

Theo đề bài ta có:
a<b; c<d;e<f nên cộng vế với vế ta được:
a+c+e<b+d+f
<=>a+c+e+a+c+e<b+d+f+a+c+e
<=>2(a+c+e)<a+b+c+d+e+f
<=>\(\frac{a+c+e}{a+b+c+d+e+f}< \frac{1}{2}\)(ĐPCM)

a) Ta có M nằm trong \(\Delta ABM.\)
=> \(A,M,I\) không thẳng hàng.
Theo bất đẳng thức tam giác với \(\Delta AMI\) có:
\(AM< MI+IA\left(1\right).\)
b) Cộng vào hai vế của (1) với \(MB\) ta được:
\(AM+MB< MB+MI+IA\)
Mà \(MB+MI=IB.\)
=> \(AM+MB< BI+IA.\)
c) Ta có 3 điểm \(B,I,C\) không thẳng hàng.
Theo bất đẳng thức tam giác với \(\Delta BIC\) có:
\(BI< IC+BC.\) (2)
d) Cộng vào hai vế của (2) với \(IA\) ta được:
\(BI+IA< IA+IC+BC\)
Mà \(IA+IC=AC.\)
=> \(BI+IA< AC+BC.\)
e) Vì \(\left\{{}\begin{matrix}AM+MB< BI+IA\left(cmt\right)\\BI+IA< AC+BC\left(cmt\right)\end{matrix}\right.\)
=> \(AM+MB< AC+BC.\)
Chúc bạn học tốt!