Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì \(\widehat{BAD}+\widehat{ADC}=180^o\) nên AB//CD
(do có 1 cặp góc bù nhau ở vị trí trong cùng phía)
b, Vì AB//CD nên \(\widehat{ABC}+\widehat{BCD}=180^o\) (cặp góc trong cùng phía)
\(\Rightarrow\widehat{ABC}=180^o-\widehat{BCD}=180^o-70^o=110^o\)
Vậy................
Chúc bạn học tốt!!!
hình như bạn viết thiếu đề
mik thấy đề chưa đủ để chứng minh câu b
Có: \(\widehat{BAD}+\widehat{ADC}=180\)
=> AB//CD ( cặp góc trong cùng phía bù nhau)
b) Có: AB//CD(cmt)
Mà: AB \(\perp\) BC (gt)
=> CD\(\perp\) BC
Giải:
a) Ta thấy \(\widehat{BAD}+\widehat{ADC}=180^o\) và 2 góc này ở vị trí trong cùng phía nên suy ra AB // CD
b) Vì AB // CD, AB _|_ BC nên suy ra BC _|_ CD
Vậy a) AB // CD
b) BC _|_ CD
a) -Vì A=B mà 2 góc này nằm ở vị trí SLT với nhau =>AB//CD
b) -Vì AB//CD => B=C1=50o (2 góc SLT)
-Vì C1+C2=180o (2 góc kề bù)
=>C2=180o-C1=180o-50o=130o
-Vì C1 và C2 là 2 góc đối đỉnh =>C1=C3=50o
-Vì C3+C4=180o (2 góc kề bù)
=>C4=180o-C3=180o-50o=130o
c) (bạn tự vẽ hình nha)
-Vì Ax là tia phân giác của BAD =>A1=A2=1/2*A=1/2*100o=50o
-Vì A2=B (=50o) mà 2 góc này nằm ở vị trí SLT với nhau => Ax//BC
~~~mk tự đánh số thứ tự nên bn cẩn thận nhìn kĩ nha. vs lại phần c) mk ngại vẽ lại hình nên bn tự vẽ nha~~~
Trời ơi! Một đóng bài thế này bạn đăng lên 1 năm sau không biết có ai giải rồi hết chưa nữa, đăng từng cái lên thôi nha bạn , vừa nhìn vào đã thấy hoa mắt chóng mặt
Ta có hình vẽ:
B A E C D m 100 140 120
Kẻ tia Am là tia đối của AB
Ta có: BAE + EAm = 180o (kề bù)
=> 100o + EAm = 180o
=> EAm = 180o - 100o
=> EAm = 80o
Lại có: EAm + mAC = EAC
=> 80o + mAC = 120o
=> mAC = 120o - 80o
=> mAC = 40o
Vì mAC + ACD = 40o + 140o = 180o mà mAC và ACD là 2 góc trong cùng phía
=> Am // CD
Mà AB là tia đối của Am => AB // CD (đpcm)
Có: \(\widehat{BCA}+\widehat{ACD}=30+80=110\)
\(\widehat{ABC}+\widehat{BCD}=70+110=180\)
=>AB//CD ( Cặp góc trong cùng phía bù nhau)
Xét \(\Delta ABC\) có :
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) ( bđt \(\Delta\))
\(\Rightarrow\widehat{A}+70^0+30^0=180^0\)
\(\Rightarrow\widehat{A}=80^0\)
\(\Rightarrow\widehat{A}=\widehat{ACB}\)
Mà \(\widehat{A};\widehat{ABC}\) đồng vị
=> AB // CD
a) Ta có: \(\widehat{BAD}\) + \(\widehat{ADC}\) = 180o (gt)
mà chúng là hai góc trong cùng phía
Do đó AB // CD (dấu hiệu nhận biết 2 đường thẳng song song)
Vậy AB // CD