Cho hình vẽ: Biết AB//CD và AD//BC                                    

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2016

?o?n th?ng f: ?o?n th?ng [A, B] ?o?n th?ng f_1: ?o?n th?ng [A_1, C] ?o?n th?ng h: ?o?n th?ng [A, D] ?o?n th?ng i: ?o?n th?ng [B, C] ?o?n th?ng j: ?o?n th?ng [A, C] ?o?n th?ng k: ?o?n th?ng [B, D] ?o?n th?ng l: ?o?n th?ng [A, M] ?o?n th?ng m: ?o?n th?ng [A, N] A = (0.14, 4.82) A = (0.14, 4.82) A = (0.14, 4.82) B = (5.32, 4.88) B = (5.32, 4.88) B = (5.32, 4.88) D = (3.64, 1.1) D = (3.64, 1.1) D = (3.64, 1.1) C = (8.82, 1.16) C = (8.82, 1.16) C = (8.82, 1.16) ?i?m M: Trung ?i?m c?a i ?i?m M: Trung ?i?m c?a i ?i?m M: Trung ?i?m c?a i ?i?m N: Trung ?i?m c?a f_1 ?i?m N: Trung ?i?m c?a f_1 ?i?m N: Trung ?i?m c?a f_1 ?i?m E: Giao ?i?m c?a k, l ?i?m E: Giao ?i?m c?a k, l ?i?m E: Giao ?i?m c?a k, l ?i?m F: Giao ?i?m c?a k, m ?i?m F: Giao ?i?m c?a k, m ?i?m F: Giao ?i?m c?a k, m ?i?m O: Giao ?i?m c?a j, k ?i?m O: Giao ?i?m c?a j, k ?i?m O: Giao ?i?m c?a j, k

a. Do AB//CD nên góc ABD = BDC, ADB = CBD. Suy ra \(\Delta ABD=\Delta CDB\left(g-c-g\right)\Rightarrow AB=CD,AD=BC\)

b. Dễ thấy \(\Delta AOB=\Delta COD\left(g-c-g\right)\Rightarrow OA=OC,OB=OD\)

c. Xét tam giác ABC có AM và BO là các đường trung tuyến nên E là trọng tâm, vậy OB = 2EO.

Tương tự DF=2FO. Mà OD = OB. Vậy BE = EF = DF.

16 tháng 1 2017

a) Vì d là đường trug trực của AB mà C,D thuộc d nên: AC=BC =>tam giác ACB cân tại C=> Góc CAB= góc CBA   (1)

                                                                                 AD=BD=>tam giácABD cân tại D=> Góc DAB= góc DBA      (2)

  TỪ (1) và

18 tháng 1 2017

Chơi cả hỏi trên mạng à.

5 tháng 2 2020

Tự vẽ hình

a, Do tam giác ABC cân tại A ( gt )
=> AB = AC ; ABC = ACB  ( tính chất tam giác cân)
Xét tam giác ABD và tam giác ACE có :

Góc BAC chung

AB = AC ( cmt ) 
ADB = AEC ( = 90 độ )
=> Tam giác ABD = ACE ( cạnh huyền - góc nhọn )
=> ABD = ACE ( 2 góc tương ứng )

AD = AE ( 2 cạnh tương ứng )
=> Tam giác ADE cân tại A ( định nghĩa tam giác cân )
 => ADE = AED ( tính chất tam giác cân )
Trong tam giác ABC có : ABC + ACB + BAC = 180 độ ( Tổng 3 góc của 1 tam giác )
Trong tam giác AED có : AED + ADE + BAC = 180 độ ( tổng 3 góc của 1 tam giác ) 
=> ABC + ACB = AED + ADE 
Mà ABC = ACB ; AED = ADE ( cmt ) 
=> 2.ABC = 2.AED => ABC = AED
Mà 2 góc này ở vị trí đồng vị => DE // BC ( Dấu hiệu nhận biết 2 đường thẳng song song )
Vậy DE // BC
b, Ta có : AE + BE = AB
AD + CD = AC
Mà AE = AD ; AB = AC ( cmt ) => BE = CD
Xét tam giác EOB và tam giác DOC có : 
BDC = CEB ( = 90 độ )
BE = CD ( cmt )
ABD = ACE ( cmt ) 
=> tam giác EOB = DOC ( g.c.g )
=> OE = OD ( 2 cạnh tương ứng ) 
Vậy tam giác EOB = DOC
c, Ta có : AE = AD ( cmt ) => A nằm trên đường trung trực của đoạn thẳng DE
OE = OD ( cmt ) => O nằm trên đường trung trực của đoạn thẳng DE
=> AO là trung trực của đoạn thẳng DE
Vậy AO là trung trực của đoạn thẳng DE
d, Vì AO là trung trực của đoạn thẳng DE ( cmt ) 
=> AO // DE ( t/c đường trung trực )
Mà DE // BC ( cmt ) => AO vuông góc với BC ( từ vuông góc đến song song )
Xét tam giác ABC cân tại A có AH là đường trung tuyến 
=> AH đồng thời là đường cao ứng với cạnh BC ( t/c tam giác cân )
=> AH vuông góc với BC 
=> AH và AO trùng nhau => A,H,O thẳng hàng ( đpcm )

16 tháng 12 2016

Ta có hình vẽ:

O A B C D M N

a/ Xét tam giác OAC và tam giác OBD có:

OA = OB (GT)

góc AOC = góc BOD (đối đỉnh)

OC = OD (GT)

=> tam giác OAC = tam giác OBD (c.g.c)

=> AC = BD (2 cạnh tương ứng)

Ta có: tam giác OAC = tam giác OBD (đã chứng minh trên)

=> góc CAO = góc OBD (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AC // BD (đpcm)

b/ Xét tam giác OAD và tam giác OBC có:

OA = OB (GT)

góc AOD = góc BOC (đối đỉnh)

OC = OD (GT)

=> tam giác OAD = tam giác OBC (c.g.c)

=> AD = BC (2 cạnh tương ứng)

Ta có: tam giác OAD = tam giác OBC (đã chứng minh trên)

=> góc DAO = góc CBO (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AD // BC 9đpcm)

c/ Ta có: COM = DON (đối đỉnh)

Ta có: góc AOD + góc AOM + góc COM = 1800

=> góc AOD + góc AOM + góc DON = 1800

hay góc MON = 1800

hay M,O,N thẳng hàng

17 tháng 12 2016

A B C D O M N a) Xét ΔCAO và ΔDBO có:

OA=OB (gt)

\(\widehat{COA}=\widehat{DOB}\) (đối đỉnh)

OC=OD (gt)

=> ΔCAO=ΔDBO (c.g.c)

=> AC=BD (hai cạnh tương ứng)

ΔCAO=ΔDBO

=> \(\widehat{OAC}=\widehat{OBD}\) mà hai góc ở vị trí so le trong nên

=> AC//BD. (đpcm)

b) Xét ΔAOD và ΔBOC có:

OA=OB (gt)

\(\widehat{AOD}=\widehat{BOC}\) (đối đỉnh)

OD=OC (gt)

=> ΔAOD=ΔBOC (c.g.c)

=> AD=BC (hai cạnh tương ứng)

ΔAOD=ΔBOC

=> \(\widehat{OAD}=\widehat{OBC}\) mà hai góc ở vị trí so le trong nên

=> AD//BC (đpcm)

c) Ta có: \(\widehat{AOM}=\widehat{NOB}\) (đối đỉnh)

Mà ta có: \(\widehat{AOM}+\widehat{MOC}+\widehat{COB}=180^o\)

=> \(\widehat{MOC}+\widehat{COB}+\widehat{BON}=\widehat{MON}=180^o\)

Vậy ba điểm M,O,N thẳng hàng

 

25 tháng 12 2018

???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

25 tháng 12 2018

a, xét tam giác aec và tam giác aed có

ae chung

ec=ed(gt)

ac=ad(gt)

=>tam giác aec = tam giác aed(ccc)

b. từ cma ta có tam giác aec = tam giác aed

=>góc cae=góc dac(2 góc tg ứng)

xét tam giác cai và tam giác dai có

ca=da(gt)

góc cae=góc dac(cmt)

ai chung

=>tam giác cai =tam giác dai(cgc)

=>ci=di(2 cạnh tg ứng)

Câu 1: Cho tam giác ABC vuông tai A. Kẻ phân giác BD của \(\widehat{ABC}\)( D thuộc AC), trên cạnh BC lấy E sao cho BA = BE.a) Chứng minh tam giác ABD = tam giác EBD và DE vuông góc với BC.b) Giả sử AD= 6cm, DC = 10cm. Tính độ dài đoạn EC.c) Biết tia ED cắt tia BA tại F và gọi M là trung điểm của đoạn FC. Chứng minh ba điểm B,D,M thẳng hàng.Câu 2: Cho tam giác ABC vuông tại A, có Ab = 6cm ; BC = 10cm.a) Tính ACb) Kẻ BD là...
Đọc tiếp

Câu 1: Cho tam giác ABC vuông tai A. Kẻ phân giác BD của \(\widehat{ABC}\)( D thuộc AC), trên cạnh BC lấy E sao cho BA = BE.

a) Chứng minh tam giác ABD = tam giác EBD và DE vuông góc với BC.

b) Giả sử AD= 6cm, DC = 10cm. Tính độ dài đoạn EC.

c) Biết tia ED cắt tia BA tại F và gọi M là trung điểm của đoạn FC. Chứng minh ba điểm B,D,M thẳng hàng.

Câu 2: Cho tam giác ABC vuông tại A, có Ab = 6cm ; BC = 10cm.

a) Tính AC

b) Kẻ BD là phân giác của \(\widehat{ABC}\) (D thuộc AC), kẻ DE vuông góc với BC ( E thuộc BC). Chứng minh DA = DE.

c) Chứng minh BD đi qua trung điểm của AE.

Câu 3: Cho góc xOy ( \(\widehat{xOy}\)không bằng 180) và tia Om là phân giác cuẩ góc xOy. Lấy điểm A thuộc Ox ; B thuộc Oy sao cho OA = OB. Gọi I là giao điểm của Om và AB.

a) Chứng minh tam giác AOI = tam giác BOI

b) Từ I kẻ IE thuộc Ox ( E thuộc Ox ) ; IF vuông góc với Oy ( F thuộc Oy ). Chứng minh tam giác EIF cân.

c) Lấy M trên Ox ( A nằm giữa O và M ) vẽ MN // Ab ( N thuộc Oy ), gọi H là trung điểm của MN =. Chứng minh 3 điểm O, I, H thẳng hàng.

  LÀm ơn giúp với mai mình thi rồi. Vẽ cả hình nhé. Cảm ơn ~

1
27 tháng 2 2019

cau 1 :

A B C E

Xet tam giac ABD va tam giac EBD co : BD chung

goc ABD = goc DBE do BD la phan giac cua goc ABC (gt)

AB = BE (Gt)

=> tam giac ABD = tam giac EBD (c - g - c)

=> goc BAC = goc DEB (dn) 

ma goc BAC = 90 do tam giac ABC vuong tai A (gt)

=> goc DEB = 90 

=> DE _|_ BC (dn)

b, tam giac ABD = tam giac EBD (cau a)

=> AB = DE (dn)

AB = 6 (cm) => DE = 6 cm

DE _|_ BC => tam giac DEC vuong tai E 

=> DC2 = DE2 + CE2 ; DC = 10 cm (gt); DE = 6 cm (cmt)

=> CE2 = 10- 62

=> CE2 = 64

=> CE = 8 do CE > 0