Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

?o?n th?ng f: ?o?n th?ng [A, B] ?o?n th?ng f_1: ?o?n th?ng [A_1, C] ?o?n th?ng h: ?o?n th?ng [A, D] ?o?n th?ng i: ?o?n th?ng [B, C] ?o?n th?ng j: ?o?n th?ng [A, C] ?o?n th?ng k: ?o?n th?ng [B, D] ?o?n th?ng l: ?o?n th?ng [A, M] ?o?n th?ng m: ?o?n th?ng [A, N] A = (0.14, 4.82) A = (0.14, 4.82) A = (0.14, 4.82) B = (5.32, 4.88) B = (5.32, 4.88) B = (5.32, 4.88) D = (3.64, 1.1) D = (3.64, 1.1) D = (3.64, 1.1) C = (8.82, 1.16) C = (8.82, 1.16) C = (8.82, 1.16) ?i?m M: Trung ?i?m c?a i ?i?m M: Trung ?i?m c?a i ?i?m M: Trung ?i?m c?a i ?i?m N: Trung ?i?m c?a f_1 ?i?m N: Trung ?i?m c?a f_1 ?i?m N: Trung ?i?m c?a f_1 ?i?m E: Giao ?i?m c?a k, l ?i?m E: Giao ?i?m c?a k, l ?i?m E: Giao ?i?m c?a k, l ?i?m F: Giao ?i?m c?a k, m ?i?m F: Giao ?i?m c?a k, m ?i?m F: Giao ?i?m c?a k, m ?i?m O: Giao ?i?m c?a j, k ?i?m O: Giao ?i?m c?a j, k ?i?m O: Giao ?i?m c?a j, k
a. Do AB//CD nên góc ABD = BDC, ADB = CBD. Suy ra \(\Delta ABD=\Delta CDB\left(g-c-g\right)\Rightarrow AB=CD,AD=BC\)
b. Dễ thấy \(\Delta AOB=\Delta COD\left(g-c-g\right)\Rightarrow OA=OC,OB=OD\)
c. Xét tam giác ABC có AM và BO là các đường trung tuyến nên E là trọng tâm, vậy OB = 2EO.
Tương tự DF=2FO. Mà OD = OB. Vậy BE = EF = DF.

a) Vì d là đường trug trực của AB mà C,D thuộc d nên: AC=BC =>tam giác ACB cân tại C=> Góc CAB= góc CBA (1)
AD=BD=>tam giácABD cân tại D=> Góc DAB= góc DBA (2)
TỪ (1) và

Tự vẽ hình
a, Do tam giác ABC cân tại A ( gt )
=> AB = AC ; ABC = ACB ( tính chất tam giác cân)
Xét tam giác ABD và tam giác ACE có :
Góc BAC chung
AB = AC ( cmt )
ADB = AEC ( = 90 độ )
=> Tam giác ABD = ACE ( cạnh huyền - góc nhọn )
=> ABD = ACE ( 2 góc tương ứng )
AD = AE ( 2 cạnh tương ứng )
=> Tam giác ADE cân tại A ( định nghĩa tam giác cân )
=> ADE = AED ( tính chất tam giác cân )
Trong tam giác ABC có : ABC + ACB + BAC = 180 độ ( Tổng 3 góc của 1 tam giác )
Trong tam giác AED có : AED + ADE + BAC = 180 độ ( tổng 3 góc của 1 tam giác )
=> ABC + ACB = AED + ADE
Mà ABC = ACB ; AED = ADE ( cmt )
=> 2.ABC = 2.AED => ABC = AED
Mà 2 góc này ở vị trí đồng vị => DE // BC ( Dấu hiệu nhận biết 2 đường thẳng song song )
Vậy DE // BC
b, Ta có : AE + BE = AB
AD + CD = AC
Mà AE = AD ; AB = AC ( cmt ) => BE = CD
Xét tam giác EOB và tam giác DOC có :
BDC = CEB ( = 90 độ )
BE = CD ( cmt )
ABD = ACE ( cmt )
=> tam giác EOB = DOC ( g.c.g )
=> OE = OD ( 2 cạnh tương ứng )
Vậy tam giác EOB = DOC
c, Ta có : AE = AD ( cmt ) => A nằm trên đường trung trực của đoạn thẳng DE
OE = OD ( cmt ) => O nằm trên đường trung trực của đoạn thẳng DE
=> AO là trung trực của đoạn thẳng DE
Vậy AO là trung trực của đoạn thẳng DE
d, Vì AO là trung trực của đoạn thẳng DE ( cmt )
=> AO // DE ( t/c đường trung trực )
Mà DE // BC ( cmt ) => AO vuông góc với BC ( từ vuông góc đến song song )
Xét tam giác ABC cân tại A có AH là đường trung tuyến
=> AH đồng thời là đường cao ứng với cạnh BC ( t/c tam giác cân )
=> AH vuông góc với BC
=> AH và AO trùng nhau => A,H,O thẳng hàng ( đpcm )

Ta có hình vẽ:
O A B C D M N
a/ Xét tam giác OAC và tam giác OBD có:
OA = OB (GT)
góc AOC = góc BOD (đối đỉnh)
OC = OD (GT)
=> tam giác OAC = tam giác OBD (c.g.c)
=> AC = BD (2 cạnh tương ứng)
Ta có: tam giác OAC = tam giác OBD (đã chứng minh trên)
=> góc CAO = góc OBD (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AC // BD (đpcm)
b/ Xét tam giác OAD và tam giác OBC có:
OA = OB (GT)
góc AOD = góc BOC (đối đỉnh)
OC = OD (GT)
=> tam giác OAD = tam giác OBC (c.g.c)
=> AD = BC (2 cạnh tương ứng)
Ta có: tam giác OAD = tam giác OBC (đã chứng minh trên)
=> góc DAO = góc CBO (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AD // BC 9đpcm)
c/ Ta có: COM = DON (đối đỉnh)
Ta có: góc AOD + góc AOM + góc COM = 1800
=> góc AOD + góc AOM + góc DON = 1800
hay góc MON = 1800
hay M,O,N thẳng hàng
A B C D O M N a) Xét ΔCAO và ΔDBO có:
OA=OB (gt)
\(\widehat{COA}=\widehat{DOB}\) (đối đỉnh)
OC=OD (gt)
=> ΔCAO=ΔDBO (c.g.c)
=> AC=BD (hai cạnh tương ứng)
Vì ΔCAO=ΔDBO
=> \(\widehat{OAC}=\widehat{OBD}\) mà hai góc ở vị trí so le trong nên
=> AC//BD. (đpcm)
b) Xét ΔAOD và ΔBOC có:
OA=OB (gt)
\(\widehat{AOD}=\widehat{BOC}\) (đối đỉnh)
OD=OC (gt)
=> ΔAOD=ΔBOC (c.g.c)
=> AD=BC (hai cạnh tương ứng)
Vì ΔAOD=ΔBOC
=> \(\widehat{OAD}=\widehat{OBC}\) mà hai góc ở vị trí so le trong nên
=> AD//BC (đpcm)
c) Ta có: \(\widehat{AOM}=\widehat{NOB}\) (đối đỉnh)
Mà ta có: \(\widehat{AOM}+\widehat{MOC}+\widehat{COB}=180^o\)
=> \(\widehat{MOC}+\widehat{COB}+\widehat{BON}=\widehat{MON}=180^o\)
Vậy ba điểm M,O,N thẳng hàng

???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
a, xét tam giác aec và tam giác aed có
ae chung
ec=ed(gt)
ac=ad(gt)
=>tam giác aec = tam giác aed(ccc)
b. từ cma ta có tam giác aec = tam giác aed
=>góc cae=góc dac(2 góc tg ứng)
xét tam giác cai và tam giác dai có
ca=da(gt)
góc cae=góc dac(cmt)
ai chung
=>tam giác cai =tam giác dai(cgc)
=>ci=di(2 cạnh tg ứng)

cau 1 :
A B C E
Xet tam giac ABD va tam giac EBD co : BD chung
goc ABD = goc DBE do BD la phan giac cua goc ABC (gt)
AB = BE (Gt)
=> tam giac ABD = tam giac EBD (c - g - c)
=> goc BAC = goc DEB (dn)
ma goc BAC = 90 do tam giac ABC vuong tai A (gt)
=> goc DEB = 90
=> DE _|_ BC (dn)
b, tam giac ABD = tam giac EBD (cau a)
=> AB = DE (dn)
AB = 6 (cm) => DE = 6 cm
DE _|_ BC => tam giac DEC vuong tai E
=> DC2 = DE2 + CE2 ; DC = 10 cm (gt); DE = 6 cm (cmt)
=> CE2 = 102 - 62
=> CE2 = 64
=> CE = 8 do CE > 0