Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì I là giao điểm của các đường phân giác của \(\Delta MNP\) nên nó cách đều các cạnh của \(\Delta MNP\)
\(\Rightarrow IH=IP\)
b) \(\Delta IKN\) vuông tại K áp dụng định lý Pi-ta-go ta có:
\(IN^2=IK^2+KN^2\)
\(\Rightarrow IK^2=IN^2-KN^2\)
\(\Rightarrow IK^2=13^2-12^2\)
\(\Rightarrow IK^2=25\)
\(\Rightarrow IK=\sqrt{25}=5\left(cm\right)\)
Vì I cách đều các cạnh của \(\Delta MNP\) nên
\(\Rightarrow IK=IH=5\left(cm\right)\)
a: Xét ΔBAI vuông tại A và ΔBHI vuông tại H có
BI chung
\(\widehat{ABI}=\widehat{HBI}\)
Do đó: ΔBAI=ΔBHI
Suy ra: IA=IH
b: Xét ΔAIK vuông tại A và ΔHIC vuông tại H có
IA=IH
\(\widehat{AIK}=\widehat{HIC}\)
Do đó: ΔAIK=ΔHIC
Suy ra: IK=IC
hay ΔIKC cân tại I
Trong tam giác ABC có:
∠A + ∠(ABC) + ∠(ACB) = 180o ⇒ ∠(ABC) + ∠(ACB) = 180o - 80o = 100o
Mà BI và CI lâ các tia phân giác nên
∠(ABC) + ∠(ACB) = 2.∠(IBC) + 2.∠(ICB) = 2 (∠(IBC) + ∠(ICB) )
Suy ra ∠(IBC) + ∠(ICB) = 50o
Mà ∠(IBC) + ∠(ICB) + ∠(BIC) = 180o ⇒ ∠(BIC) = 130o.
a: \(BH=\sqrt{AB^2-AH^2}=5\left(cm\right)\)
\(AC=\sqrt{AH^2+HC^2}=20\left(cm\right)\)
BC=BH+CH=21(cm)
Chu vi tam giác ABC là:
\(C=20+21+13=54\left(cm\right)\)
b: Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
a: BC=căn 4^2+3^2=5cm
AC<AB<BC
=>góc B<góc C<góc A
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
c: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có
góc EBF chung
=>ΔBEF đồng dạng với ΔBAC
=>BF=BC
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó:ΔABD=ΔEBD
b: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
c: Xét ΔADI vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADI}=\widehat{EDC}\)
Do đó:ΔADI=ΔEDC
Suy ra: AI=EC
Ta có: BA+AI=BI
BE+EC=BC
mà BA=BE
và AI=EC
nên BI=BC
hayΔBIC cân tại B
d: Ta có: AD=DE
mà DE<DC
nên AD<DC
a: Xét ΔABC có AB<AC<BC
nên góc C<góc B<góc A
b: góc C=180-50-60=70 độ
Xét ΔABC có góc A<góc B<góc C
nên BC<AC<AB
h