Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left\{{}\begin{matrix}AD\perp CD\\BC\perp CD\end{matrix}\right.\Rightarrow AD\text{//}BC\\ b,\text{Kẻ Oz//AD thì Oz//BC}\\ \Rightarrow\widehat{AOz}=\widehat{OAD}=40^0;\widehat{BOz}=\widehat{OBC}=35^0\left(\text{so le trong}\right)\\ \Rightarrow\widehat{AOB}=\widehat{AOz}+\widehat{BOz}=75^0\\ c,\text{Đề không rõ ràng}\)
a b d c
ta có ab // cd , ad // bc
và a vuông góc => a = 90
vì ab // cd => a + d = 180 ( TCP ) => 90 + d = 180 => d = 90
vì ad // bc => d + c = 180 ( TCP ) => 90 + c = 180 => c = 90
vì ab // cd => c + b = 180 ( TCP ) => 90 + b = 180 => c = 90
nếu A thẳng hàng với C thì ko đc nên C phải chéo với A
=>các góc kia =90 độ
a) Do \(\widehat{ABD}\) đổi đỉnh với góc bên ngoài
\(\Rightarrow\widehat{ABD}=75^o\)
b) Ta có \(\widehat{ABd}=180^o-75^o=105^o\) (kể bù)
\(\Rightarrow\widehat{\text{C}DB}=\widehat{ABd}=105^o\)
Mà hai góc này ở vị trí đồng vị
\(\Rightarrow a//b\)
d) Ta có: \(a//b\) và \(a\perp c\)
\(\Rightarrow b\perp c\)
a) Do ∠ABD và ∠dBa' là hai góc đối đỉnh
⇒ ∠ABD = ∠dBa' = 75⁰
b) Ta có:
∠ABD + ∠a'BD = 180⁰ (kề bù)
⇒ ∠a'BD = 180⁰ - ∠ABD
= 180⁰ - 75⁰
= 105⁰
⇒ ∠a'BD = ∠CDB = 105⁰
Mà ∠a'BD và ∠CDB là hai góc so le trong
⇒ a // b
c) Do c ⊥ a (gt)
a // b (cmt)
⇒ c ⊥ b
a) Ta có: ΔABC vuông tại A(gt)
⇔\(\widehat{B}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)
⇔\(\widehat{B}=90^0-\widehat{C}=90^0-36^0\)
hay \(\widehat{B}=54^0\)
Vậy: \(\widehat{B}=54^0\)
b) Xét ΔAMB vuông tại A và ΔCMD vuông tại C có
AM=CM(M là trung điểm của AC)
\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)
Do đó: ΔAMB=ΔCMD(cạnh góc vuông-góc nhọn kề)
c) Ta có: ΔAMB=ΔCMD(cmt)
nên MB=MD(hai cạnh tương ứng)
Xét ΔAMD và ΔCMB có
MD=MB(cmt)
\(\widehat{AMD}=\widehat{CMB}\)(hai góc đối đỉnh)
MA=MC(M là trung điểm của AC)
Do đó: ΔAMD=ΔCMB(c-g-c)
Suy ra: \(\widehat{MAD}=\widehat{MCB}\)(hai góc tương ứng)
mà \(\widehat{MAD}\) và \(\widehat{MCB}\) là hai góc ở vị trí so le trong
nên AD//BC(Dấu hiệu nhận biết hai đường thẳng song song)
80 80 60 1 A D 2 1 1 B C x 40 z y 1 H 1
Vì B(80) , B(40) và B1 là 3 góc kề bù
=> 80 + 40 + B1 = 180
=>120 + B1 = 180
=> B1 = 60
Vì B1 và H1 là 2 góc so le trong
=> B1 = H1 = 60
Vì H1 = C1 = 60
mà 2 góc nằm ở vị trí đồng vị
=> Ay // BC
a) Vì B1 và A1 cùng có số đo = 80
mà 2 góc nằm ở vị trí đồng vị
=> AD // BC
b) Vì C1 và D1 là 2 góc so le trong
=> C1 = D1 = 60
Vì D1 và D2 là 2 góc kề bù
=> D1 + D2 = 180
=> 60 + D2 = 180
=> D2 = 120
a