A B C H

A)SO SÁNH \(\wid...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2019

AAI NHANH MIK CHO 

NHANH NHANH MIK DG CẦN GẤP

Xét ∆ABC có : 

BAC + ACB + ABC = 180° 

=> ABC + ACB = 180° - 90° = 90° 

Xét ∆ABH có : 

BAH + BHA +  ABH = 180° 

=> ABH + BAH = 90° 

Xét ∆AHC ta có : 

AHC + HCA + HAC = 180° 

=> HAC + HCA = 90° 

=> BAH = HAC 

=> AH là phân giác BAC 

Mà AH là đường cao 

=> ∆ABC cân tại A 

=> ABC = ACB 

Hay ABH = C , ACH = B

11 tháng 8 2019

mik nhầm nha vẽ p/g CD của góc ACB

a) Xét ∆DIC và ∆DAC ta có : 

DC chung 

CI = CA

ICD = ACD ( CD là phân giác) 

=> ∆DIC = ∆DAC (c.g.c)

=> DA = DI ( tương ứng) 

b) Vì ∆DIC = ∆DAC (cmt)

=> DAC = DIC = 90° 

c) Ta có : IC = AC (gt)

=> ∆IAC cân tại C 

Mà CD là phân giác ∆BCA 

=> CD là trung trực ∆AIC 

=> CD \(\perp\)AI

23 tháng 11 2017

B A C E D

a, Vì BA = BC => \(\Delta ABC\) cân tại B => \(\widehat{A}=\widehat{C}\)

b, Vì BA = BC => BE = BD 

Xét \(\Delta BDA\) và \(\Delta BEC\) có:

BA = BC (gt)

BD = BE (cmt)

\(\widehat{B}\): chung

Do đó \(\Delta BDA=\Delta BEC\left(c.g.c\right)\)

=> \(\widehat{BDA}=\widehat{BEC}\) (2 góc t/ứ)

c, Vì \(\Delta BDA=\Delta BEC\Rightarrow\widehat{BAD}=\widehat{BCE}\) (2 góc tương ứng)

Mà \(\widehat{A}=\widehat{C}\)  (câu a)

Do đó \(\widehat{A}-\widehat{BAD}=\widehat{C}-\widehat{BCE}\) hay \(\widehat{CAD}=\widehat{ACE}\)

20 tháng 4 2017

a)Ta có \(\widehat{BIK}\) là góc ngoài của BAI.

Nên \(\widehat{BIK}>\widehat{BAI}\) (1)

b) \(\widehat{CIK}>\widehat{CAI}\)( Góc ngoài của \(\Delta\) CAI)

Từ (1) và (2) ta có:

\(\widehat{BIK}+\widehat{CIK}>\widehat{BAI}+\widehat{CAI}\)

\(\Rightarrow\widehat{BIC}>\widehat{BAC}\)


20 tháng 4 2017

) Ta có ∠BIK là góc ngoài của ∠BAI( hay là góc ngoài ∠BAK)

Các em lưu ý nếu không hiểu: Góc ngoài của tam giác lớn hơn mỗi ngóc trong không kề với nó (ở đây là tam giác ∆ BIA)

Nên ∠BIK > ∠BAK (1)

b) Góc ∠CIK > ∠CAI (2) (Góc ngoài của ∆ CAI)

Từ (1) và (2) ta có: ∠BIK + ∠CIK > ∠BAK + ∠CAI

Mà ∠BIC = ∠BIK + ∠CIK; ∠BAC = ∠BAK + ∠CAI

⇒ ∠BIC > ∠BAC.

14 tháng 8 2020

B C A I 1 1 2 2 M

a) xét \(\Delta ABC\)

\(\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

\(\Rightarrow80^o+\widehat{B}+\widehat{C}=180^o\)

\(\Rightarrow\widehat{B}+\widehat{C}=100^o\)

mà hai tia BI và CI lần lượt là tia hân giác của ^B và ^C

\(\Rightarrow\widehat{B_1}+\widehat{B_2}+\widehat{C_1}+\widehat{C_2}=100^o\)

\(\Rightarrow2\widehat{B_2}+2\widehat{C_2}=100^o\)

\(\Rightarrow2\left(\widehat{B_2}+\widehat{C_2}\right)=100^o\)

\(\Rightarrow\widehat{B_2}+\widehat{C_2}=50^o\)

XÉT \(\Delta BCI\)

\(\widehat{B_2}+\widehat{C_2}+\widehat{BIC}=180^o\left(đl\right)\)

THAY \(50^o+\widehat{BIC}=180^o\)

\(\Rightarrow\widehat{BIC}=180^o-50^o=130^o\)

B) TA CÓ

\(\widehat{BIC}=130^o;\widehat{BAC}=80^o\)

\(\Rightarrow\widehat{BIC}>\widehat{BAC}\left(1\right)\left(130^o>80^o\right)\)

mà \(\widehat{BIC}>\widehat{BMC}\left(2\right)\)( Góc ngoài của tam giác lớn hơn mỗi góc trong không kề với nó.)

MÀ \(\widehat{BAM}< \widehat{BMC}\)HAY \(\widehat{BAC}< \widehat{BMC}\left(3\right)\)( Góc ngoài của tam giác lớn hơn mỗi góc trong không kề với nó.)

TỪ (1) VÀ (2) VÀ (3) \(\Rightarrow\widehat{BIC}>\widehat{BMC}>\widehat{BAC}\)