K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2018

AD=15 cm

11 tháng 9 2018

Dựa vào tính chất pitago

8 tháng 11 2017

A B C D E 16 17 24

có ABCD là Hthang vuông (gt)

=> AB // CD (t/c Hthang)

mà E thuộc CD => AB // EC

tứ giác ABCE có AB // EC (cmt)

AE // BC ( gt)

=> ABCE là HBH ( vì là tứ giác có các cạnh đối //)

=> AB = EC = 16 ( t/c HBH )

AE = BC = 17

có DE + EC = DC

=> DE + 16 = 24

=> DE = 8

có tam giác ADE vuông tại D ( vì ABCD là Hthang vuông)

=> \(AD^2+DE^2=AE^2\) (định lý Py-ta-go)

=>\(AD^2=AE^2-DE^2=17^2-8^2\)

= 225 = \(15^2\)

=>AD =15

a: \(CB=\sqrt{12^2+16^2}=20\left(cm\right)\)

AH=12*16/20=9,6cm

Xet ΔABC có AD là phân giác

nên BD/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=20/7

=>BD=60/7cm; CD=80/7cm

b: Sửa đề: AB,AC

Xét tứ giác AMHN có

góc AMH=góc ANH=góc MAN=90 độ

=>AMHN là hình chữ nhật

AM=AH^2/AB=9,6^2/12=7,68(cm)

AN=AH^2/AC=9,6^2/16=5,76(cm)

\(S_{AMHN}=7.68\cdot5.76=44.2368\left(cm^2\right)\)

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: BC=căn 12^2+16^2=20cm

AH=12*16/20=9,6cm

BH=AB^2/BC=7,2cm

c: AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=20/7

=>BD=60/7\(\simeq8,6\left(cm\right)\) và CD=80/7\(\simeq11,4\left(cm\right)\)

 

1 tháng 11 2017

Để học tốt Toán 8 | Giải toán lớp 8

Hình thang ABCD có đáy AB, CD ⇒ AB // CD ⇒ ∠A2 = ∠C1 ̂ (hai góc so le trong)

Lại có: AD // BC ⇒ ∠A1 = ∠C2 (hai góc so le trong)

Xét ΔABC và ΔCDA có:

∠A2 = ∠C1 (cmt)

AC chung

∠A1 = ∠C2 (cmt)

⇒ ΔABC = ΔCDA (g.c.g)

⇒ AD = BC, AB = CD (các cặp cạnh tương ứng)

b)

Để học tốt Toán 8 | Giải toán lớp 8

Xét ΔABC và ΔCDA có:

AC chung

∠A2 = ∠C1 (cmt)

AB = CD

⇒ ΔABC = ΔCDA (c.g.c)

⇒ AD = BC (hai cạnh tương ứng)

∠A1 = ∠C2 (hai góc tương ứng) ⇒ AD // BC (hai góc so le trong bằng nhau)

5 tháng 8 2016

Bạn tự vẽ hình nha ==''

a.

AB _I_ BC

AB _I_ AD

=> AD // BC

b.

AD // BC

=> C + D = 1800 (2 góc kề bù)

\(C=3D\Rightarrow\frac{C}{3}=\frac{D}{1}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{C}{3}=\frac{D}{1}=\frac{C+D}{3+1}=\frac{180^0}{4}=45^0\)

\(\frac{C}{3}=45^0\Rightarrow C=45^0\times3=135^0\)

\(\frac{D}{1}=45^0\Rightarrow D=45^0\)

Chúc bạn học tốt ^^

hình bạn tự vé nhé.

tam giác ABC vuông tại A nên theo định lý PY-Ta-Go ta có:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow6^2+8^2=BC^2\)

\(\Rightarrow BC=10\left(DO-BC>0\right)\)

b) xét \(\Delta ABC\) VÀ  \(\Delta HBA\) CÓ:

\(\widehat{BAC}=\widehat{AHB}\)

\(\widehat{B}\) CHUNG

\(\Rightarrow\Delta ABC\) đồng dạng vs  \(\Delta HBA\)

c)sửa đề:\(AB^2=BH.BC\)

TA CÓ: \(\Delta ABC\text{ᔕ}\Delta HBA\)

\(\Rightarrow\frac{AB}{BH}=\frac{BC}{AB}\left(tsđd\right)\)

\(\Rightarrow AH^2=BH.BC\)

8 tháng 7 2017

Hỏi thầy Bách ý tao còn câu 2

a) Xét ΔABC vuông tại A có \(\widehat{C}=30^0\)(gt)

mà cạnh đối diện với \(\widehat{C}\)

nên \(\dfrac{AB}{BC}=\dfrac{1}{2}\)(Định lí)

Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{CD}=\dfrac{AB}{BC}\)(Tính chất tia phân giác của tam giác)

hay \(\dfrac{AD}{CD}=\dfrac{1}{2}\)

b) Ta có: \(BC=2\cdot AB\)(cmt)

nên \(BC=2\cdot12.5=25\left(cm\right)\)

Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=25^2-12.5^2=468.75\)

hay \(AC=\dfrac{25\sqrt{3}}{2}cm\)

Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{12\cdot\dfrac{25\sqrt{3}}{2}}{2}=\dfrac{150\sqrt{3}}{2}=75\sqrt{3}\left(cm^2\right)\)