Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt tên các góc như trên hình vẽ.
Do đường thẳng a // BC nên \(\widehat{O_1}=\widehat{B_1}\) (Hai góc đồng vị)
Do đường thẳng b // AC nên \(\widehat{B_1}=\widehat{C}\) (Hai góc so le trong)
Vậy nên \(\widehat{O_1}=\widehat{C}\)
a) Xét \(\Delta ABC\) có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) (Định lý tổng ba góc trong một tam giác)
⇔ \(\widehat{A}+65^o+65^o=180^o\)
⇔\(\widehat{A}+130^o=180^o\)
⇔\(\widehat{A}=180^o-130^{o^{ }}\)
⇔\(\widehat{A}=50^o\)
Hay \(\widehat{BAC}=50^o\)
b) Vì \(Am\) // BC (gt)
⇔\(\widehat{CAm}=\widehat{C}\) (vì 2 góc so le trong)
mà \(\widehat{C}=65^o\) (gt)
⇔\(\widehat{CAm}=65^o\)
Vì AC nằm giữa tia AB và Am
⇔\(\widehat{BAC}+\widehat{CAm}=\widehat{BAm}\)
⇔\(50^o+65^o=\widehat{BAm}\)
⇔\(\widehat{BAm}=115^o\)
Ta có \(\widehat{BAm}+\widehat{nAm}=180^o\) (vì 2 góc kề bù)
⇔ \(115^o+\widehat{nAm}=180^o\)
⇔\(\widehat{nAm}=180^o-115^o\)
⇔\(\widehat{nAm}=65^o\)
mà \(\widehat{CAm}=65^o\) (cmt)
⇔\(\widehat{nAm}=\widehat{CAm}=65^o\)
⇔Am là tia phân giác của \(\widehat{nAC}\) (đpcm)