K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 11 2021

Lời giải:

$Q,M$ lần lượt là trung điểm của $AD, AB$ nên $QM$ là đường trung bình của tam giác $ADB$ ứng với cạnh $BD$

$\Rightarrow QM\parallel BD$

Tương tự:

$MN\parallel AC, PN\parallel BD, QP\parallel AC$

Do đó:

$MN\parallel PQ\parallel AC$ và $QM\parallel PN\parallel DB$ 

Tứ giác $MNPQ$ có 2 cặp cạnh đối song song với nhau nên là hình bình hành.

Mà $AC\perp BD$ (do $ABCD$ là hình thoi)

$\Rightarrow QM\perp MN\Rightarrow \widehat{M}=90^0$

Hình bình hành $MNPQ$ có $\widehat{M}=90^0$ nên $MNPQ$ là hình chữ nhật.

 

AH
Akai Haruma
Giáo viên
26 tháng 11 2021

Hình vẽ:

Xét ΔABD có AM/AB=AQ/AD

nên MQ//BD và MQ=BD/2

Xét ΔCBDcó CN/CB=CP/CD

nên NP//BD và NP=BD/2

=>MQ//PN và MQ=PN

=>MNPQ là hình bình hành

22 tháng 12 2018

Tứ giác có thể là hình vuông, chữ nhật phải không bạn?

P/s: Hỏi thôi chớ không trả lời đâu :D

26 tháng 8 2023

Xét Δ AQN và Δ MBN có :

\(\widehat{QAM}=\widehat{MBN}=90^o\)

\(AM=BM\) (M là trung điểm AB)

\(AQ=BN\) (Q;N là trung điểm AD;BC và AD=BC)

⇒ Δ AQN và Δ MBN (cạnh, góc, cạnh)

\(\Rightarrow QM=MN\left(1\right)\)

Chứng minh tương tự :

- Δ AQN và Δ QDP (cạnh, góc, cạnh) \(\Rightarrow QM=QP\left(2\right)\)

- Δ PNC và Δ QDP (cạnh, góc, cạnh) \(\Rightarrow PN=QP\left(3\right)\)

- Δ PNC và Δ MBN  (cạnh, góc, cạnh) \(\Rightarrow PN=MN\left(4\right)\)

\(\left(1\right);\left(2\right);\left(3\right);\left(4\right)\Rightarrow QM=MN=PN=QP\)

⇒ Tứ giác MNQP là hình thoi (dpcm)

8 tháng 8 2017

a) Chứng minh được MBPD và BNDQ đều là hình bình hành Þ ĐPCM.

b) Áp dụng định lý Talet đảo cho DABD và DBAC tacos MQ//BD và MN//AC.

Mà ABCD là hình thoi nên AC ^ BD Þ MQ ^ MN

MNPQ là hình chữ nhật vì có các góc ở đỉnh là góc vuông

21 tháng 12 2018

giúp mình với sắp thi rồi

29 tháng 10 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Trong  △ ABD ta có:

M là trung điểm của AB

Q là trung điểm của AD nên MQ là đường trung bình của  △ ABD.

⇒ MQ // BD và MQ = 1/2 BD (tính chất đường trung bình của tam giác) (1)

Trong  △ CBD ta có:

N là trung điểm của BC

P là trung điểm của CD

nên NP là đường trung bình của  △ CBD

⇒ NP // BD và NP = 1/2 BD (tính chất đường trung bình của tam giác) (2)

Từ (1) và (2) suy ra: MQ // NP và MQ = NP nên tứ giác MNPQ là hình bình hành

AC ⊥ BD (gt)

MQ // BD

Suy ra: AC ⊥ MQ

Trong △ ABC có MN là đường trung bình ⇒ MN // AC

Suy ra: MN ⊥ MQ hay (NMQ) = 90 0

Vậy tứ giác MNPQ là hình chữ nhật.

Xét ΔMNQ có 

A là trung điểm của MN

D là trung điểm của MQ

Do đó: AD là đường trung bình của ΔMNQ

Suy ra: AD//NQ và AD=NQ/2(1)

Xét ΔNPQ có 

B là trung điểm của NP

C là trung điểm của QP

Do đó: BC là đường trung bình của ΔNPQ
Suy ra: BC//NQ và BC=NQ/2(2)

Từ (1) và (2) suy ra AD//BC và AD=BC

Xét ΔMNP có 

A là trung điểm của MN

B là trung điểm của NP

Do đó: AB là đường trung bình của ΔMNP

Suy ra: AB=MP/2=NQ/2(3)

Từ (1) và (3) suy ra AD=AB

Xét tứ giác ABCD có 

AD//BC

AD=BC

Do đó: ABCD là hình bình hành

mà AB=AD

nên ABCD là hình thoi