Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ OE,OF,OG,OH lần lượt là đg cao của các tam giác vuông DOC,AOB,AOD,BOC.
Vì OE=OF=OG=OH=h
và:AC=m;OA=OC-->OA=OC=m/2
tg tự với DB=n;DO=DB ta cũng có:
DO=OB=n/2
Xét tam giác vuông AOB (O= 90 độ do hình thoi có 2 đg chéo vuông góc)
và OF là đường cao có:
1/OF2 =1/OA^2+1/OB^2
-->1/h^2=1/\(\left(\frac{m}{2}\right)\)^2+1/(n/2)^2 (1)
CM tương tự vs các tam giác vuông còn lại đều đc kquar như trên đánh số (1),(2),(3),(4)
Cộng (1),(2), (3),(4) ta đc:4/h^2 =16/m^2+16/n^2
Chia cả 2 vế cho 16 ta đc điều phải cm
A B C D O H K I
+ Qua C kẻ đg thẳng vuông góc với AC và cắt AD tại I
Gọi H,K lần lượt là hình chiếu của O,C trên AD.
+ OD là đg trung bình của ΔACI
=> CI = 2OD = BD = n
+ OH là đg trung bình của ΔACK
=> CK = 2OH = 2h
+ ΔACI vuông tại C, đg cao CK
\(\Rightarrow\frac{1}{CK^2}=\frac{1}{AC^2}+\frac{1}{CI^2}\)
\(\Rightarrow\frac{1}{\left(2h\right)^2}=\frac{1}{m^2}+\frac{1}{n^2}\Rightarrow\frac{1}{m^2}+\frac{1}{n^2}=\frac{1}{4h^2}\)
Bài 1:
a: \(P=\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}=\dfrac{-\sqrt{x}-1}{\sqrt{x}}\)
b: Để \(P=\dfrac{-3}{2}\) thì \(\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{3}{2}\)
\(\Leftrightarrow3\sqrt{x}=2\sqrt{x}+2\)
hay x=4
Bài 2:
a: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
b: \(\dfrac{BC}{\cot B+\cot C}=BC:\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)=AH\)(đpcm)
Ta có
\(\frac{1}{AC^2}+\frac{1}{BD^2}=\frac{AC^2+BD^2}{\left(AC.BD\right)^2}\)
\(S_{ABCD}=\frac{AC.BD}{2}\Rightarrow2.S_{ABCD}=AC.BD\Rightarrow4.S^2_{ABCD}=\left(AC.BD\right)^2\)
\(\Rightarrow\frac{1}{AC^2}+\frac{1}{BD^2}=\frac{AC^2+BD^2}{4.S^2_{ABCD}}\) (*)
Mà
\(S_{ABCD}=\frac{\left(AB+CD\right).AH}{2}=\frac{2.AB.AH}{2}=AB.AH\) (AB=CD theo t/c hình thoi)
\(\Rightarrow S^2_{ABCD}=AB^2.AH^2\)(1)
Xét tg vuông AOB ta có
\(AB^2=AO^2+BO^2=\left(\frac{AC}{2}\right)^2+\left(\frac{BD}{2}\right)^2=\frac{AC^2+BD^2}{4}\) Thay vào (1)
\(\Rightarrow S^2_{ABCD}=\frac{\left(AC^2+BD^2\right).AH^2}{4}\Rightarrow4.S^2_{ABCD}=\left(AC^2+BD^2\right).AH^2\) Thay vào (*)
\(\Rightarrow\frac{1}{AC^2}+\frac{1}{BD^2}=\frac{AC^2+BD^2}{\left(AC^2+BD^2\right).AH^2}=\frac{1}{AH^2}\left(dpcm\right)\)