K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2022

\(\Delta ADB\text{ cân tại A}\Rightarrow\widehat{ADB}=\dfrac{180^0-\widehat{BAD}}{2}=65^0\\ \text{Ta có }\widehat{MBH}=\widehat{BCD}=\widehat{ADN}=\widehat{BAD}=50^0\\ \Rightarrow\widehat{ODN}=\widehat{ADB}+\widehat{ADN}=115^0\\ MH\text{//}AN\Rightarrow\widehat{MHA}=\widehat{HAN}\\ \Rightarrow\widehat{MHB}+\widehat{MBH}=\widehat{BAD}+\widehat{NAD}\\ \Rightarrow\widehat{MHB}=\widehat{NAD}\\ \Rightarrow\Delta MHB\sim\Delta AND\left(g.g\right)\\ \Rightarrow\dfrac{MB}{AD}=\dfrac{HB}{ND}\Rightarrow MB\cdot NC=AD\cdot HB\left(1\right)\)

\(\left\{{}\begin{matrix}\widehat{OHB}=\widehat{AOD}=90^0\\\widehat{HBO}=\widehat{ODA}\end{matrix}\right.\Rightarrow\Delta HBO\sim\Delta ODA\\ \Rightarrow\dfrac{HB}{OD}=\dfrac{OB}{AD}\Rightarrow HB\cdot AD=OB\cdot OD\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow\dfrac{MB}{OD}=\dfrac{OB}{ND}\\ \text{Mà }\widehat{MBO}=\widehat{NDO}\\ \Rightarrow\Delta MBO\sim\Delta ODN\left(c.g.c\right)\\ \Rightarrow\widehat{MOB}=\widehat{OND}\Rightarrow\widehat{MOB}+\widehat{NOD}=\widehat{OND}+\widehat{NOD}\\ \Rightarrow\widehat{MOB}+\widehat{NOD}=180^0-\widehat{NDO}=65^0\\ \Rightarrow180^0-\widehat{MON}=65^0\\ \Rightarrow\widehat{MON}=115^0\)

4 tháng 11 2018

A B C D M N F O E I J x

a) Xét \(\Delta\)ABM và \(\Delta\)ADN có: ^ABM = ^ADN (=900); AB=AD; BM=DN  => \(\Delta\)ABM = \(\Delta\)ADN (c.g.c)

=> AM=AN (2 canh tương ứng);  ^BAM = ^DAN (2 góc tương ứng). Mà ^BAM + ^DAM = 900

=> ^DAN + ^DAM = ^MAN = 900 => AM vuông góc AN

Ta có: MF//AN; NF//AM; AM vuông góc AN nên ^MAN = ^AMF = ^ANF = 900

Do đó: Tứ giác ANFM là hình chữ nhật. Lại có: AM=AN (cmt) => Tứ giác ANFM là hình vuông (đpcm).

b) Gọi I và J lần lượt là hình chiếu của F trên 2 đường thẳng CD và BC

Tứ giác ANFM là hình vuông => FM=FN

Xét tứ giác CNFM có: ^MCN = ^MFN = 900 => ^FNC + ^CMF = 1800 => ^FNC = ^FMJ hay ^FNI = ^FMJ

Xét \(\Delta\)FIN và \(\Delta\)FJM có: ^FIN = ^FJM (=900); FN=FM; ^FNI = ^FMJ

=> \(\Delta\)FIN = \(\Delta\)FJM (Ch.gn) => FI = FJ (2 cạnh tương ứng)

Xét ^MCN: Có FI và FJ là k/c từ điểm F tới 2 cạnh của góc này; FI=FJ

=> F nằm trên đường phân giác của ^MCN (đpcm).

c) Gọi giao điểm của tia AD và CF là E.

CF là phân giác ^MCN => ^FCN = ^MCN/2 = 450 => ^FCN = ^ACD = 450 

=> \(\Delta\)ACE vuông tại C có đường phân giác CD. Mà CD vuông góc AE

=> \(\Delta\)ACE vuông cân tại C = >CD đồng thời là đường trung tuyến => D là trung điểm AE

Suy ra: OD là đường trung bình \(\Delta\)FAE => OD // EF hay OD // CF (1)

Dễ c/m: BD // CF (Do ^DBC + ^BCF = 450 + 1350 = 1800)                  (2)

Từ (1) và (2) => 3 điểm B;D;O thẳng hàng (đpcm).

d) Ta thấy: B;D;O là 3 điểm thẳng hàng; BD cố định nên O luôn thuộc đường thẳng BD cố định khi M di động trên Cx.

4 tháng 11 2018

câu e đâu bạn :v

6 tháng 9 2015

bạn vô đây coi bài nào thích hớp thì xem Cho tam giác ABC. Trên tia đối của tia BC lấy điểm D sao cho BD = AB. Trên tia đối của tia CB lấy điểm E sao cho CE = AC. Gọi H là chân đường vuông góc kể từ B đến AD, K là chân đường vuông góc kẻ từ C đến AE a) Chứng minh rằng HK song song với DE b) Tính HK, biết chu vi tam giác ABC bằng 10 cm Bài 2 Cho tam giác ABC, đường trung tuyến AM. Trên tia đối của tia AM lấy điểm N sao cho AN = AM. Gọi K là giao điểm của CA và NB. Chứng minh NK = 1/2 KB... Xem thêm - Tìm với Google

5 tháng 2 2020

Gọi AM cắt DE tại I 

Theo tính chất hình chữ nhật ADHE : \(\widehat{E_1}=\widehat{HAC}=\widehat{MBA};\widehat{A_1}=\widehat{D_1}=\widehat{AHE}=\widehat{MCA}\)

\(\Rightarrow\widehat{A_1}=\widehat{ACM}\Rightarrow\Delta ACM\)cân tại M \(\Rightarrow MA=MC\)(*)

Do \(\Delta AID\)vuông tại I suy ra 

\(\widehat{DAM}+\widehat{D_1}=90^0\Leftrightarrow\widehat{DAM}+\widehat{DAH}=90^0\left(1\right)\)

\(\widehat{ABM}+\widehat{DAH}=90^0\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{DAM}=\widehat{ABM}\)

\(\Rightarrow\Delta ABM\)cân tại M \(\Rightarrow MA=MB\)(**)

Từ (*);(**) suy ra MB=MC hay M là trung điểm BC . Do MF//AC suy ra 

\(\widehat{MFC}=\widehat{ACF}\)

Mà 

5 tháng 2 2020

\(\widehat{ACF}=\widehat{MCF}\Rightarrow\widehat{MFC}=\widehat{MCF}\Rightarrow\Delta MFC\)cân tại M suy ra MC=MF

Mà MB=MC suy ra \(\Delta BFC\) có  FM là trung tuyến \(FM=\frac{1}{2}BC\Rightarrow\)  \(\Delta BFC\)vuông tại F hay  \(BF\perp CF\left(đpcm\right)\)

11 tháng 2 2022

undefined

a) Nhận xét \(ACB=90^o\)( góc nội tiếp chắn nửa đường tròn ) nên \(AH\) vuông góc \(BC\)

\(\Rightarrow ACH=ABC\)

Mặt khác , ta lại có :

\(ACM=ABC\)

Từ đó \(ACH=ACM\) hay CA là tia phân giác của góc MCH 

 

 

 

 

11 tháng 2 2022

Câu b làm kiểu j ạ

11 tháng 2 2022

b) 

Tam giác ABC nội tiếp đường tròn đường kính AB

=> Tam giác ABC vuông tại C

\(\Rightarrow\widehat{ACH}=\widehat{ABC}\) (cùng phụ với góc BAC)

Lại có: Góc M chung

=> ....

4 tháng 3 2018

ko bít

4 tháng 3 2018

TUI CHOI