K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Lời giải:
Vì $ABCD$ là hình thoi nên $AC\perp BD$ tại $O$ và $AC,BD$ cắt nhau tại trung điểm $O$ của mỗi đường

$\Rightarrow AO=\frac{AC}{2}=\frac{m}{2}; DO=\frac{BD}{2}=\frac{n}{2}$

Xét tam giác $AOD$ vuông tại $O$, áp dụng hệ thức lượng trong tam giác vuông:

$\frac{1}{d(O, AD)^2}=\frac{1}{OA^2}+\frac{1}{OD^2}$

$\Leftrightarrow \frac{1}{h^2}=\frac{1}{(\frac{m}{2})^2}+\frac{1}{(\frac{n}{2})^2}=\frac{4}{m^2}+\frac{4}{n^2}$

$\Leftrightarrow \frac{1}{4h^2}=\frac{1}{m^2}+\frac{1}{n^2}$ (đpcm)

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Hình vẽ:

6 tháng 8 2017

m=2AO;n=2BO>>>m^2=4AO^2;n^2=4BO^2

Áp dụng hệ thức lượng trong tam giác vuông>>>1/AO^2+1/Bo^2=1/h^2

>>>1/4AO^2+1/4BO^2=1/4h^2>>>1/m^2+1/n^2=1/4h^2

13 tháng 7 2020

+ Qua C kẻ đg thẳng vuông góc với AC và cắt AD tại I

Gọi H,K lần lượt là hình chiếu của O,C trên AD.

+ OD là đg trung bình của t/g ACI

=> CI = 2 OD = BD = n

+ OH là đg trung bình của t/g ACK

=> CK = 2 OH = 2h

+ t/g ACI vuông tại C, đg cao CK

Suy ra \(\frac{1}{CK^2}=\frac{1}{AC^2}+\frac{1}{CI^2}\)

\(< =>\frac{1}{\left(2h\right)^2}=\frac{1}{m^2}+\frac{1}{n^2}\)

\(< =>\frac{1}{4h^2}=\frac{1}{m^2}+\frac{1}{n^2}\)

Vậy ta có điều phải chứng minh

11 tháng 12 2019

Kẻ đường cao OH của tam giác vuông OAB. Áp dụng hệ thức về đường cao trong tam giác vuông cùng chú ý rằng O là trung điểm AC và BD để suy ra điều phải chứng minh.

29 tháng 7 2020

xét \(_{\Delta}\)AOB vuông tại O có:

\(\frac{1}{h^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\) hay \(\frac{1}{h^2}=\frac{1}{\left(\frac{m}{2}\right)^2}+\frac{1}{\left(\frac{n}{2}\right)^2}\)

\(\Leftrightarrow\frac{1}{h^2}=4\left(\frac{1}{m^2}+\frac{1}{n^2}\right)\)

=> đpcm

29 tháng 7 2020

A B C D O h m n