K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2023

Bài 5

A B C D E y x

\(\widehat{A}+\widehat{D}=180^o\) (Hai góc trong cùng phía bù nhau)

\(\widehat{DAx}=\widehat{BAx}=\dfrac{\widehat{A}}{2}\) (gt)

\(\widehat{ADy}+\widehat{CDy}=\dfrac{\widehat{D}}{2}\) (gt)

\(\Rightarrow\widehat{DAx}+\widehat{ADy}=\dfrac{\widehat{A}}{2}+\dfrac{\widehat{D}}{2}=\dfrac{180^o}{2}=90^o\)

Xét tg ADE có

\(\widehat{AED}=180^o-\left(\widehat{DAx}+\widehat{ADy}\right)=180^o-90^o=90^o\) (Tổng các góc trong của tg bằng 180 độ)

\(\Rightarrow Ax\perp Dy\)

Bài 6:

A B C E D

a/

Ta có

AB//CD => AB//DE

BE//AB (gt)

=> ABED là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

=> AB = DE; AD = BE (Trong hình bình hành các cạnh đối nhau thì bằng nhau)

b/

CD - DE = CE

Mà AB = DE (cmt)

=> CD - AB = CE

c/

Xét tg BCE có

BC+BE>CE (trong tg tổng độ dài 2 cạnh lớn hơn độ dài cạnh còn lại)

Mà CE = CD - DE và DE = AB (cmt) và BE = AD

=> BC+BE = BC + AD>CE = CD - AB

 

 

20 tháng 7 2023

loading...

Gọi G là giao điểm của hai đường phân giác Ax và By 

Ta có: \(\widehat{ADG}\) = \(\dfrac{1}{2}\)\(\widehat{ADE}\) ( vì DG là phân giác góc ADE)

           \(\widehat{DAG}\) = \(\dfrac{1}{2}\)\(\widehat{DAB}\)( vì AG là phân giác góc DAB )

     ⇒ \(\widehat{ADG}\) + \(\widehat{DAG}\) = \(\dfrac{1}{2}\)\(\widehat{ADE}\) + \(\dfrac{1}{2}\)\(\widehat{DAB}\) = \(\dfrac{1}{2}\)(\(\widehat{ADE}\) + \(\widehat{DAB}\)

           \(\widehat{ADE}\) + \(\widehat{DAB}\) = 1800 (vì hai góc là hai góc trong cùng phía)

      ⇒ \(\widehat{ADG}\) + \(\widehat{DAG}\) = \(\dfrac{1}{2}\) \(\times\) 1800 = 900

          Xét tam giác ADG có: \(\widehat{GAD}\) + \(\widehat{ADG}\) + \(\widehat{DGA}\) = 1800 (tổng ba góc trong 1 tam giác bằng 1800)

               ⇒ \(\widehat{DGA}\)  = 1800 - 900 = 900

Vậy tam giác ADG vuông tại G ⇒AE \(\perp\) DG (đpcm)

                                           

 

Bài 2:

Gọi AI là phân giác của góc BAD

Xét ΔDAI có góc DAI=góc DIA

nên ΔDIA cân tại D

=>DA=DI

=>CB=CI

=>ΔCBI cân tại C

=>góc CBI=góc CIB

=>góc CBI=góc ABI

=>BI là phân giác của góc ABC(ĐPCM)

20 tháng 8 2015

Xét tam giác ABD vuông tại A => AB^2 + AD^2 = BD^2 => BD = 13 (ĐL pitago) 
=> BD = BC = tam giác BDC cân tại B.
Kẻ đường cao BI => BI cũng là trung tuyến tam giác BDC vậy ID = IC.
Xét tam giác ABD vuông tại A và tam giác BID vuông tại I.
=> tam giác = tam giác (cạnh huyền- góc nhọn) (từ tìm nhé bạn)
=> BI = AD (2 góc tương ứng) 
Xét tam giác BID vuông tại I có : BD^2 = BI^2 + ID^2 (ĐL pitago) => ID = IC = 13^2 - 12^2 = căn 25 = 5.
=> ID + IC = DC = 5.2= 10. 

Lấy n là trung điểm của ad NM=5cm. Mà N là trung điểm của ad => an=mn=5cm => NM=\(\frac{1}{2}\)ad . Xét tam giác ADN có NM=\(\frac{1}{2}\)ad

=> Tam giác amd vuông ở m hay am vuông góc dm.

3 tháng 7 2023

A B C B

Đề bài phải sửa thành "biết AD=AB" mới làm được

a/

ABCD là hình thàng cân => AD=BC

Mà AD=AB (gt)

=> AD=BC

b/

ABCD là hình thang cân

\(\Rightarrow\widehat{BAD}=\widehat{ABC}\)

\(\widehat{BCD}+\widehat{ABC}=180^o\) (Hai góc trong cùng phía)

\(\Rightarrow\widehat{BCD}+\widehat{BAD}=180^o\)

=> ABCD là tứ giác nội tiếp (Tứ giác có tổng 2 góc đối bù nhau là tứ giác nt)

Ta có

Cung AB và cung BC có hai dây trương cung bằng nhau

AB=BC (cmt) => sđ cung AB = sđ cung BC (1)

\(sđ\widehat{ADB}=\dfrac{1}{2}sđcungAB\) (góc nội tiếp) (2)

\(sđ\widehat{CDB}=\dfrac{1}{2}sđcungBC\) (góc nội tiếp) (3)

Từ (1) (2) (3) \(\Rightarrow\widehat{ADB}=\widehat{CDB}\) => DB là phân giác của \(\widehat{ADC}\)