Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔACD và ΔBDC có
AC=BD
AD=BC
CD chung
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{ACD}=\widehat{BDC}\)
hay \(\widehat{ODC}=\widehat{OCD}\)
Xét ΔOCD có \(\widehat{ODC}=\widehat{OCD}\)
nên ΔOCD cân tại O
Suy ra: OC=OD
Ta có: OC+OA=AC
OB+OD=BD
mà AC=BD
và OC=OD
nên OA=OB
a) Xét ∆ACD và ∆BDC ta có :
DC chung
BC = AD (ABCD là hình thang cân )
ADC = BCD ( ABCD là hình thang cân)
=> ∆ACD = ∆BDC (c.g.c)
=> BDC = ACD (tg ứng)
=> ∆DOC cân tại O
=> OC = OD
Mà AB//DC
ABO = ODC ( so le trong)
BAO = OCN (so le trong)
Mà BDC = ACD (cmt)
=> OAB = ABO
=> ∆AOB cân tại O
=> OA = OB
b) Xét ∆OND và ∆ONC ta có
OC = OD (cmt)
ODC = ONC (cmt)
ON chung
=> ∆OND = ∆ONC (c.g.c)
=> DN = NC(1)
Mà OND + ONC = 180 độ( kề bù)
Mà OND = ONC = 180/2 = 90 độ
=> ON vuông góc với AC(2)
Từ (1) và (2) ta có ∆ cân AOB có trung trực OM đồng thời có trung tuyến OM (3)
Chứng minh tương tự ta có :
∆OMA = ∆OMB
=> AM = MB(4)
=> OMB + OMA = 180 độ(kề bù )
=> OMB = OMA = 180/2 = 90 độ
=> OM vuông góc với AB(5)
Từ (4) và(5) ta có :∆ cân DOC có trung trực ON đồng thời là trung tuyến ON (6)
Từ (3) và (5) => M , O , N thẳng hàng
a: góc OAB=góc ODC
góc OBA=góc BCD
mà góc ODC=góc BCD
nên góc OAB=góc OBA
=>ΔOBA cân tại O
b: Xét ΔABD và ΔBAC có
BA chung
BD=AC
AD=BC
=>ΔABD=ΔBAC
c: ΔABD=ΔBAC
=>góc ABD=góc BAC
=>EA=EB
=>EC=ED
d: OA+AD=OD
OB+BC=OC
mà OA=OB và AD=BC
nên OD=OC
=>OE là trung trực của DC
=>O,E,trung điểm của DC thẳng hàng
a) Chứng minh ΔOAB cân tại O:
Vì AB//CD, ta có ∠ABO = ∠CDO (do là góc đồng quy của hai đường thẳng AB và CD).
Tương tự, vì AB//CD, ta có ∠BAO = ∠DCO (do là góc đồng quy của hai đường thẳng AD và BC).
Do đó, ΔOAB có hai góc bằng nhau với ΔCDO, nên ΔOAB cân tại O.
b) Chứng minh ΔABD = ΔBAC:
Vì AB//CD, ta có ∠ABD = ∠BAC (do là góc đồng quy của hai đường thẳng AB và CD).
Tương tự, vì AB//CD, ta có ∠ADB = ∠CBA (do là góc đồng quy của hai đường thẳng AD và BC).
Do đó, ΔABD có hai góc bằng nhau với ΔBAC, nên ΔABD = ΔBAC.
c) Chứng minh EC = ED:
Vì AC là đường chéo của hình thang ABCD, nên AC chia BD thành hai đoạn bằng nhau.
Do đó, AE = CE và DE = BE.
Vì ΔAEB và ΔCEB có hai cạnh bằng nhau (AE = CE và BE = DE) và góc AEB = góc CEB (do AB//CD), nên ΔAEB = ΔCEB.
Từ đó, ta có EC = ED.
d) Chứng minh O, E và trung điểm của DC thẳng hàng:
Gọi F là trung điểm của DC. Ta cần chứng minh OF//AB.
Vì F là trung điểm của DC, nên DF = FC.
Vì AB//CD, ta có ∠FDC = ∠BAC (do là góc đồng quy của hai đường thẳng AD và BC).
Tương tự, vì AB//CD, ta có ∠FCD = ∠CBA (do là góc đồng quy của hai đường thẳng AD và BC).
Do đó, ΔFDC có hai góc bằng nhau với ΔBAC, nên ΔFDC = ΔBAC.
Từ đó, ta có OF//AB.
Vậy, O, E và trung điểm của DC thẳng hàng.