\(ABCD\)\(\left(AB//CD\right)\)có:
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2021

a) Vì hình thang ABCD là 1 tứ giác

=> ^A+^B+^C+^D=360o

=> 100o+135o+^C+80o=360o

=> 315o+^C=360o

=> ^C=360o-315o

=> ^C=45o

Vậy ^C=45o

b) Ta có E trung điểm AD; EF//CD

=> EF là đường tb của  hình thang ABCD

=> F là trung điểm BC

=> BF=FC (đpcm)

c) Vì EL _|_ CD; FG _|_ CD

=>EL//FG (1)

Mà: EF//DC ( EF là đường tb)

=> EF//LG (2)

Từ (1) và (2)=> EFGL là hình bình hành 

Lại có: ^ELG=90o hoặc ^FGL  (EL_|_CD);(FG_|_CD)

=> EFGL là hcn ( hbh có 1 góc _|_) (đpcm)

ABCD10013580E--FLG

13 tháng 12 2017

Hình bạn tự vẽ nha!

a,  ta có:

Góc A=Góc D=90°(gt)<=>AD_|_DC

BH_|_DC

=>BH//AD

ABCD là hình thang nên AB//CD

=>Tứ giác ABHD là hình chữ nhật.

b,Do ABHD  là hình chữ nhật, nên:

AB=HD=3cm

CD=6cm=>HC=6-3=3 cm

Do BH_|_CD(gt)=>góc BHC=90°

=>tam giác BHC vuông tại H

Xét tam giác vuông BHC:

Theo định lý pitago trong tam giác vuông thì:

BC^2=HC^2+BH^2

=>BH^2=BC^2-HC^2=(5)^2-(3)^2=16

=>BH=4 cm

=>Diện tích hình chữ nhật ABHD là:

3.4=12 cm2

c,Do M là M là trung điểm của BC nên:

MB=MC=BC/2=5/2=2,5cm

Do N đối xứng với M qua E (gt)nên:

EM=EN

Đường chéo AH^2=AD^2+DH^2=25cm

=>AH=5cm=>EH=5/2=2,5cm

=>Tứ giác ABCHH=NMCD vì MC=ND=BC/2=2,5 cm

EM+EN=2AB=6 cm

AB//HC=3cm;BC//AH=5cm

=>NM//DC=6cm

==> Tứ giác NMCD  là hình bình hành

d,bạn tự chứng minh (khoai quá)

21 tháng 6 2020

a).

Vì hai đường thẳng AB và  DC song song với nhau nên => góc BDC = góc ADB

Xét 2 tam giác AHB và tam giác BCD ta có: Góc AHB = Góc BCD (gt); Góc BDC = Góc ADB. => 2 tam giác đồng dạng với nhau theo trường hợp góc - góc.

b)

Xét 2 tam giác ADH và ADB ta có: Góc D chung; Góc AHD = Góc DAB. => 2 tam giác đồng dạng với nhau theo trường hợp góc - góc.

=> AD/DH = DB/AD <=> AD^2 = DH x AD

c) và d) không biết làm, bạn thông cảm. 

Chúc học tốt.

20 tháng 12 2018

vẽ hình giùm

lười

20 tháng 12 2018

A B C D E F K H

a) Vì ABCD là hình thang 

=> BAD + ADC = 180° ( trong cùng phía )

Vì AI là phân giác BAD

=> BAI = DAI = \(\frac{1}{2}BAD\) 

Vì BI là phân giác ADC 

=> ADI = CDI = \(\frac{1}{2}ADC\)

=> \(\frac{1}{2}ADC\)\(\frac{1}{2}BAD\)= 90°

Xét ∆AID có : 

IAD + IDA + AID = 180° 

=> AID = 180° - 90° = 90° 

=> AI \(\perp\)DI 

Chứng minh tương tự ta có : 

BJ \(\perp\)IC