Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Em dốt hình nên ko chắc đâu ạ! Mong mọi người check giúp em.
A B C D M N H I E
a) \(AC\cap MN=\left\{I\right\}\). Xét tam giác IAM:
Hiển nhiên ^IMA > ^IAM. Theo quan hệ giữa góc và cạnh đối diện suy ra IA > IM. (1)
Mặt khác, xét tam giác INC, hiển nhiên ^INC > ^ICN suy ra IC > IN(2)
Cộng theo vế (1) và (2) ta được AC > MN.
b)Trên tia đối HD lấy điểm E sao cho H là trung điểm DE. Khi đó
MH là đường trung bình tam giác DAE nên MH // AE. (3)
Mặt khác, dễ dàng chứng minh \(\Delta\)AHD = \(\Delta\)AHE
Suy ra ^ADH = ^AEH(*). Mà ABCD là hình thang cân nên ^ADC = ^BCD
Hay ^ADH = ^BCD (**). Từ (*) và (**) suy ra ^AEH = ^BCD
Mà chúng ở vị trí đồng vị nên AE // BC (4)
Từ (3) và ($) suy ra MH // BC (cùng song song với AE)
Suy ra đpcm.

Bài này ko khó đâu. Mình giúp bạn nhé.
a, ABCD là hình thang cân (gt) \(\Rightarrow\hept{\begin{cases}AD=BC\\\widehat{D}=\widehat{C}\end{cases}}\) (t/c hình thang cân)
Tam giác AHD vuông tại H (gt) có HM là đường trung tuyến ứng với cạnh huyền AD nên HM = 1/2 AD
M là trung điểm của AD (gt)\(\Rightarrow MA=MD=\frac{1}{2}AD\)
Do đó: HM = MD \(\Rightarrow\Delta HMD\)cân tại M
\(\Rightarrow\widehat{D}=\widehat{MHD}\) (Tính chất tam giác cân)
Mà \(\widehat{D}=\widehat{C}\left(cmt\right)\Rightarrow\widehat{MHD}=\widehat{C}\Rightarrow MH//CN\) (vì có 2 góc đồng vị bằng nhau.)

Bạn tự vẽ hình nha ==''
N là trung điểm của AC
=> HN là trung tuyến của tam giác HAC vuông tại H
=> \(HN=\frac{1}{2}AC\) (1)
M là trung điểm của AB
P là trung điểm của BC
=> MP là đường trung bình của tam giác BAC
=> \(MP=\frac{1}{2}AC\) (2)
Từ (1) và (2)
=> MP = NH
M là trung điểm của AB
M là trung điểm của AC
=> MN là trung điểm của tam giác ABC
=> MN // PH
=> MNHP là hình thang
mà MP = HN
=> MNHP là hình thang cân
Chúc bạn học tốt ^^

a: Xét ΔABC có
M là trung điểm của AB
P là trung điểm của BC
Do đó: MP là đường trung bình
=>MP=AC/2(1)
Ta có: ΔAHC vuông tại H
mà HN là đường trung tuyến
nên HN=AC/2(2)
Từ (1) và (2) suy ra MP=HN
b:

A B C M N H P
Cô hướng dẫn nhé.
a. Dễ thấy MN // HP nên NMPH là hình thang.
Xét tam giác vuông AHC có HN là trung tuyến ứng với cạnh huyền nên NH = HC = HA. Vậy thì tam giác NCH cân tại N
\(\Rightarrow\widehat{NHC}=\widehat{NCH}.\)
Do PM // AC nên \(\widehat{MPB}=\widehat{ACB}.\)
Vậy thì \(\widehat{NHC}=\widehat{MPB}\Rightarrow\widehat{NHP}=\widehat{MPH}\)
Vậy hình thang NMPH là hình thang cân.
b. Do NP // AB nên \(HM\perp AB\).
Lại có NMBP là hình bình hành nên NM = PB.
Vậy thì NM + HP = PB + PH = HB.
Xét tam giác AHB có HM là trung tuyến đồng thời đường cao nên nó là tam giác cân. Vậy HA = HB hay HA = MN + HP.
A B C M N
Cho tg ABC vuông tại A, AM là trung tuyến.
Kẻ MN vuông góc AB thì MN // AC. Do M là truung điểm BC nên MN là đường trung bình hay N là trung điểm AB.
Xét tam giác MAB có MN là đường cao đồng thời trung tuyến nên nó cân tại M hay MA = MB. Mà MA = MC nên ta có MA = MB = MC.
(Chính vì thế nên I là tâm đường tròn ngoại tiếp tam giác vuông ABC)