\(\widehat{A}\) = \(90^{\sigma}\) ,
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2021

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)có :

\(C\ge\frac{4}{1+\left(a+b\right)^2}\ge\frac{4}{1+1}=2\)

Dấu = khi a=b=1/2

10 tháng 9 2020

A B C

a, Xét tam giác ABC vuông tại A, áp dụng định lí Pytago ta có:

BC= AB2 + AC2

BC= 21+ 722

BC= 5625

BC = 75 (cm)

b, Tam giác ABC vuông tại A, đường cao AH

Ta có: AB2 = BH . BC (định lí 1)

           212 = BH . 75

           BH = 441 : 75

           BH = 5,88 (cm)

Ta có : BC = BH + HC

            75 = 5,88 + HC

            HC = 75 - 5,88

            HC = 69,12 (cm)

Ta có: AH2 = BH . HC

          AH2 = 5,88 . 69,12

          AH2 = 406,4256

          AH = 20,16 (cm)

c, (Bạn tự vẽ tia p/g nha)

Theo tính chất đường phân giác góc B ta có:

=> AD/ DC = AB/ BC

=> AD/ AB = DC/BC

=> AD/ 21 = DC/ 75

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

AD/21 = DC/ 75 = AD + DC/ 21 + 75 = AC/ 96 = 72/ 96 = 3/4

=> AD/ 21 = 3/4 => AD = 15,75 (cm)

=> DC/ 75 = 3/4 => DC = 56, 25 (cm)

Mình không biết bạn có đánh sai số hay không mà số chênh nhau lớn quá, nếu bạn đánh sai thì chỉ cần thay số trong bài mình làm cho bạn là được nha :33

CHÚC BẠN HỌC TỐT !!!

4 tháng 8 2018

Hãy tích cho tui đi

khi bạn tích tui

tui không tích lại bạn đâu

THANKS

a: \(AD=\sqrt{24^2-12^2}=12\sqrt{3}\left(cm\right)\)

\(AO=\dfrac{12\cdot12\sqrt{3}}{24}=6\sqrt{3}\left(cm\right)\)

\(DO=\dfrac{AD^2}{DB}=\dfrac{\left(12\sqrt{3}\right)^2}{24}=\dfrac{144\cdot3}{24}=18\left(cm\right)\)

OB=24-18=6cm

b: \(BH^2+MH^2=BM^2\)(ĐỊnh lí Pytago)

mà \(BM^2=MH\cdot MC\)(Hệ thức lượng)

nên \(BH^2+MH^2=MH\cdot MC\)

23 tháng 8 2019

Kẻ BH\(\perp DC\)

=< \(\widehat{BHC}=90^0\)

\(\widehat{A}=\widehat{D}=90^0\)

=> ABHD là hcn

=> \(\left\{{}\begin{matrix}BH=AD=3cm\\DH=AB=4cm\end{matrix}\right.\)(các cạnh đối trong hcn)

=> HC=DC-DH=8-4=4(cm)

Áp dụng đlýpy-ta-go vào tam giác vuông BHC có:

\(BC^2=BH^2+HC^2=3^2+4^2=25\)

=> BC=5 (cm)

Áp dụng ht lượng trong tam giác vuông có

\(sin\widehat{C}=\frac{BH}{BC}=\frac{3}{5}\) => \(\widehat{C}\approx37^0\)

\(sin\widehat{HBC}=\frac{HC}{BC}=\frac{4}{5}\) => \(\widehat{BHC}\approx53^0\)

Có : \(\widehat{B}=\widehat{BHC}+\widehat{ABH}=53^0+90^0=143^0\)