K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2017

gọi AE giao với DC=i

dễ dàng chứng minh \(ME=NF=\frac{1}{2}AB\)

dựa vào đình lí Ta lét ta có 

\(\frac{ME}{DI}=\frac{AE}{AI}=\frac{EF}{IC}\)

để ME=EF<=> DI=CI <=> I là trung điểm của DC

dễ dàng chứng minh E là trung điểm của BD

=>HI//BC=> AI//BC=> ABCI là hình binhf hành <=> AB=IC  <=> AB=CD/2

a) Ta có: MN là đường trung bình của hình thang ABCD(AB//CD)

nên MN//AB//CD và \(MN=\dfrac{AB+CD}{2}\)(Định lí 4 về đường trung bình của hình thang)

hay EN//AB và MF//AB

Xét ΔCAB có 

N là trung điểm của BC(gt)

NE//AB(cmt)

Do đó: E là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)

Xét ΔCAB có 

E là trung điểm của AC(cmt)

N là trung điểm của BC(gt)

Do đó: EN là đường trung bình của ΔCAB(Định nghĩa đường trung bình của tam giác)

nên \(EN=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔDAB có 

M là trung điểm của AD(gt)

MF//AB(cmt)

Do đó: F là trung điểm của BD(Định lí 1 về đường trung bình của tam giác)

Xét ΔDAB có 

M là trung điểm của AD(gt)

F là trung điểm của BD(cmt)

Do đó: MF là đường trung bình của ΔDAB(Định nghĩa đường trung bình của tam giác)

nên \(MF=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra MF=EN

\(\Leftrightarrow MF+FE=EN+FE\)

\(\Leftrightarrow ME=FN\)(đpcm)

b) Ta có: \(EN=MF=\dfrac{AB}{2}\)(cmt)

nên \(EN=MF=\dfrac{6}{2}=3\left(cm\right)\)

Ta có: \(MN=\dfrac{AB+CD}{2}\)(cmt)

nên \(MN=\dfrac{6+8}{2}=\dfrac{14}{2}=7\left(cm\right)\)

Ta có: MF+FE+EN=MN

\(\Leftrightarrow EF=MN-MF-EN=7-3-3=1\left(cm\right)\)

Vậy: EF=1cm