Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D 2cm E 4cm 45
Kẻ \(BE\perp CD\)
Xét \(\Delta BEC\)vuông tại E có :
\(\widehat{BEC}=90^o\) ( theo cách vẽ )
Mà \(\widehat{C}=45^o\)(gt)
\(\Rightarrow\Delta BEC\)vuông cân tại E
\(\Rightarrow BE=EC\)( tính chất tam giác vuông cân )
Hay \(BE\perp DC\)(1)
Vì \(\widehat{D}=90^o\left(gt\right)\)
\(\Rightarrow AD\perp DC\left(2\right)\)
Từ (1) và (2) \(\Rightarrow AD//BE\)( từ vuông góc đến song song )
Hình thang \(ABED\) có \(AD//BE\left(cmt\right)\)
\(\Rightarrow AB=DE\)( theo nhận xét của hình thang )
Mà \(AB=2cm\left(gt\right)\)
\(\Rightarrow AB=DE=2cm\)
Ta có \(EC=CD-BE\)
\(\Rightarrow EC=4-2\)
\(\Rightarrow EC=2cm\)
Mà BE = EC (cmt)
\(\Rightarrow BE=2cm\)
\(\Rightarrow S_{ABCD}=\frac{1}{2}\left(AB+CD\right).BE=\frac{1}{2}.\left(2+4\right).2=\frac{1}{2}.6.2=6\left(cm^2\right)\)
Vậy \(S_{ABCD}=6\left(cm^2\right)\)
Chúc bạn học tốt !!!
Xét △ABD và △BAC có :
AD = BC (gt)
AB chung
^A = ^B (gt)
\(\Rightarrow\)△ABD = △BAC (cgc)
\(\Rightarrow\)^ADB = ^ BCA
Mà ^ADC = ^BCD
\(\Rightarrow\)^ODC = ^OCD
Lại có : AC ⊥ BD
\(\Rightarrow\)△OCD vuông cân tại O
Chứng minh tương tự với △OAB :
\(\Rightarrow\)ĐPCM
Áp dụng định lí Pitago vào △OAB vuông tại O có :
Có: OA2 + OB2 = AB2
=> 2OA2 = 16
=> OA = \(2\sqrt{2}\)cm
Tương tự: OD = \(4\sqrt{2}\)cm
Kẻ MN đi qua O và vuông góc với AB(tại M) và CD(tại N)
=> M là trung điểm AB ; N là trung điểm CD (vì ABCD là hình thang cân)
Có: OM2 = OA2 - AM2 = \(\left(2\sqrt{2}\right)^2-2^2\) = 8 - 4 = 4 cm
=> OM = 2cm
Tương tự chứng minh :
=> ON = 4 cm
=> MN = 6 cm
Vậy SABCD = \(\frac{\left(4+8\right).6}{2}=36\) cm2
A D B C
a, xét \(\Delta ABD\) và \(\Delta BDC\) ta có :
∠ABD = ∠BDC ( slt , AB//DC)
\(\frac{AB}{BD}=\frac{BD}{DC}=\frac{2}{4}=\frac{4}{8}=\frac{1}{2}\)
⇒ \(\Delta ABD\) ~ \(\Delta BDC\) ( c - g - c )
→ ∠DAB = ∠DBC = 90o
b, áp dụng pytago vào \(\Delta DBC\) vuông ta có :
DC2 = BD2 + BC2 ⇌ BC2 = DC2 - BD2 = 64 - 16 = 48cm
⇒ BC = \(\sqrt{48}\)
Sao đoạn \(\widehat{DAB}=\widehat{DBC}=90^o\) được vậy