K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔOAB vuông tại O và ΔOCD vuông tại O có

góc OAB=góc OCD
=>ΔOAB đồng dạng với ΔOCD

b: Xét ΔABD vuông tại A và ΔDAC vuông tại D có 

góc ABD=góc DAC

=>ΔABD đồng dạng với ΔDAC

9 tháng 4 2019

tại sao từ ob/od=oa/oc có thể => do/db=co/ca??

a: Xét ΔBDE vuông tại D và ΔDCE vuông tại C có

góc E chung

=>ΔBDE đồng dạng với ΔDCE

b: Xét ΔHDC vuông tại H và ΔDBE vuông tại D có

góc HDC=góc DBE

=>ΔHDC đồng dạng với ΔDBE

=>DH/DB=CH/DE

=>DH*DE=CB*CH=DC^2

c: DC^2=CH*DB

=>CH*10=8^2=64

=>CH=6,4cm

\(DH=\sqrt{8^2-6.4^2}=4.8\left(cm\right)\)

=>DE=8^2/4,8=40/3(cm)

=>CE=32/3(cm)

Xét ΔHCE vuông tại H và ΔCDE vuông tại C có

góc HEC chung

=>ΔHCE đồng dạng với ΔCDE

=>\(\dfrac{S_{HCE}}{S_{CDE}}=\left(\dfrac{CE}{DE}\right)^2=\left(\dfrac{32}{3}:\dfrac{40}{3}\right)^2=\left(\dfrac{4}{5}\right)^2=\dfrac{16}{25}\)

a: Xét ΔAHD vuông tại H và ΔBAD vuông tại A có

góc D chung

=>ΔAHD đồng dạng với ΔBAD

b; Xét ΔDEA vuông tại D và ΔADB vuông tại A có

góc DEA=góc ADB

=>ΔDEA đồng dạng với ΔADB

=>DE/AD=AD/AB

=>AD^2=DE*AB

c: AD^2=DE*AB

=>DE=3^2/4=2,25cm

2 tháng 8 2017
bạn ơi bạn làm đc bài này chưa cho mình lời giải với
19 tháng 6 2018

Chú ý :Δ là tam giác

a) Xét ΔAOD và ΔBAD có:

{Dˆ:chungAOˆD=DAˆB=90⇒ΔAOD≀ΔBAD(g.g)

b) Ta có: DAˆO=ABˆD=ABˆO(ΔAOD≀ΔBAD)

Và AOˆD=AOˆB=90 (2 đường chéo vuông góc tại O)

Do đó ΔAOD≀ΔBOA(g.g)

⇒ADAB=ODAO (1)

Lại có: {DAˆO:chungAOˆD=ADˆC=90⇒ΔADC≀ΔAOD(g.g)

⇒CDOD=ADAO⇔CDAD=ODAO (2)


 
Từ (1);(2)⇒ADAB=CDAD⇒AD2=AB⋅CD

c) Ta có: AB song song với DC (ABCD là hình thang)

⇒ABˆO=ODˆC(slt)

Và AOˆB=DOˆC(đ2)

Do đó ΔOCD≀ΔOAB(g.g)

⇒k=OCOA=CDAB=94

⇒SΔOCDSΔOAB=k2=942=8116

Vậy........................

Chúc bạn học tốt nhé !

13 tháng 5 2022

A B C D O E H K

a/ Xét 2 tg vuông BDE và tg vuông DCE có

\(\widehat{DEB}\) chung

\(\widehat{DBE}=\widehat{CDE}\) (cùng phụ với \(\widehat{DEB}\) )

=> tg BDE đồng dạng với tg DCE (g.g.g)

b/ Xét tg vuông DCE có

\(DC^2=DH.DE\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu của cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

Xét tg vuông DHC và tg vuông BDE có

 \(\widehat{DCH}=\widehat{DEB}\) (cùng phụ với \(\widehat{CDE}\) )

=> tg DHC đồng dạng với tg BDE

\(\Rightarrow\dfrac{DH}{DB}=\dfrac{CH}{DE}\Rightarrow DH.DE=CH.DB\)

\(\Rightarrow DC^2=CH.DB\)

c/

Ta có

\(BD\perp DE;CH\perp DE\) => CH//BD (cùng vuông góc với DE)

\(\Rightarrow\dfrac{KH}{OD}=\dfrac{KC}{OB}\) (talet) \(\Rightarrow\dfrac{KH}{KC}=\dfrac{OD}{OB}\)

Mà OD=OB (trong HCN hai đường chéo cắt nhau tại trung điểm mỗi đường)

\(\Rightarrow\dfrac{KH}{KC}=\dfrac{OD}{OB}=1\Rightarrow KH=KC\) => K là trung điểm của HC

Xét tg vuông BCD có

\(DB=\sqrt{BC^2+CD^2}=\sqrt{6^2+8^2}=10cm\)

Ta có

\(DC^2=CH.DB\Rightarrow CH=\dfrac{DC^2}{DB}=\dfrac{8^2}{10}=6,4cm\)

\(\dfrac{S_{EHC}}{S_{EDB}}=\dfrac{\dfrac{EH.CH}{2}}{\dfrac{ED.DB}{2}}=\dfrac{EH.CH}{ED.DB}=k\)

Ta có

CH//DB (cmt)\(\Rightarrow\dfrac{EH}{ED}=\dfrac{CH}{DB}\)

\(\Rightarrow k=\left(\dfrac{CH}{DB}\right)^2=\left(\dfrac{6,4}{10}\right)^2=\left(\dfrac{4}{5}\right)^4\)

 

 

a: Xét ΔBDE vuông tại D và ΔDCE vuông tại C có

góc E chung

=>ΔBDE đồng dạng với ΔDCE

b: Xét ΔHCD vuông tại H và ΔCDB vuông tại C có

góc HCD=góc CDB

=>ΔHCD đồng dạng với ΔCDB

=>HC/CD=CD/DB

=>CD^2=HC*DB