Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ACD\) vuông tại C, có:
\(CAD+ADC=90\) độ \(\Rightarrow ADC=90độ-ADC=90-60=30độ\)
AC là pgiac BAD=> \(CAD=CAB=\dfrac{1}{2}BAD\Rightarrow BAD=2CAD=2.30=60độ\)
Hình thang ABCD, có: BAD=CAD=60 độ=> ABCD là hình thang cân
b) \(\Delta ACD\) vuông tại C có : DAC=30 độ => \(CD=\dfrac{1}{2}AD\) (đlí)
BC//AD=>BCA=CAD (so le trong)
Mà BAC=DAC (cm a)
=> BAC=BCA => tam giác ABC cân tại A =>BC=AB
ABCD là hthang cân => AB=CD
Ta có: \(P_{ABCD}=AB+BC+CD+AD=CD+CD+CD+2CD=20\)
\(\Leftrightarrow CD=\dfrac{20}{5}=4\left(cm\right)\Rightarrow AD=2.CD=2.4=8\left(cm\right)\)
tia AB cắt DC tại E ta thấy
AC là phân giác của góc ^DAE (gt)
AC vuông DE (gt)
=> tgiác ADE cân (AC vừa đường cao, vừa là phân giác)
lại có góc D = 60o nên ADE là tgiác đều
=> C là trung điểm DE (AC đồng thời la trung tuyến)
mà BC // AD => BC là đường trung bình của tgiác ADE
Ta có:
AB = DC = AD/2 và BC = AD/2
gt: AB + BC + CD + AD = 20
=> AD/2 + AD/2 + AD/2 + AD = 20
=> (5/2)AD = 20
=> AD = 2.20 /5 = 8 cm
Tia AB cắt DC tại E.
=> AC là tia phân giác của \(\widehat{DAE}\left(gt\right)\)
\(\Rightarrow AC\perp DE\left(gt\right)\)
=> Tam giác ADE cân.
Lại có: \(\widehat{D}=60^o\Rightarrow\Delta ADE\) là tam giác đều.
=> C là trung điểm DE (AC đồng thời la trung tuyến)
Mà: BC//AD => BC là đường trung bình của \(\Delta ADE\)
Ta có: \(AB=DC=\frac{AD}{2},BC=\frac{AD}{2}\)
Giả thiết: \(AB+BC+CD+AD=20\)
\(\Rightarrow\frac{AD}{2}+\frac{AD}{2}+\frac{AD}{2}+AD=20\)
\(\Rightarrow\frac{5}{2}AD=20\Rightarrow AD=8\left(cm\right)\)
Em tham khảo câu 1 tại link dưới:
Câu hỏi của Thư Anh Nguyễn - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo link dưới:
Câu hỏi của Thư Anh Nguyễn - Toán lớp 8 - Học toán với OnlineMath