K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2016

Xét tam giác ABD và BCD có chiều cao bằng nhau đáy AB = 1/2 CD => S_ABD = 1/2 S_BCD

Mặt khác 2 tam giác này có chung đáy BD => chiều cao đỉnh A = 1/2 chiều cao đỉnh C

Xét tam giác ABG và BCG chung đáy BG, chiều cao đỉnh A = 1/2 chiều cao đỉnh C => S_ABG = 1/2 S_BCG

Vậy diện tích tam giac BCG là : 34,5 x 2 = 69 (cm2)

Diện tích ABCD là : (34,5 + 69) + (34,5 + 69) x 2 = 310,5 (cm2)

                                                                       Đáp số: 310,5 cm2

17 tháng 3 2016

Xét tam giác ABD và BCD có chiều cao bằng nhau đáy AB = 1/2 CD => S_ABD = 1/2 S_BCD

Mặt khác 2 tam giác này có chung đáy BD => chiều cao đỉnh A = 1/2 chiều cao đỉnh C

Xét tam giác ABG và BCG chung đáy BG, chiều cao đỉnh A = 1/2 chiều cao đỉnh C => S_ABG = 1/2 S_BCG

Vậy diện tích tam giac BCG là : 34,5 x 2 = 69 (cm2)

Diện tích ABCD là : (34,5 + 69) + (34,5 + 69) x 2 = 310,5 (cm2)

1 tháng 2 2019

Chiều cao hình thang ABCD là:157,5:(9+12)=

1 tháng 2 2019

Chiều cao hình thang ABCD là:157,5x2:(9+12)=15(cm)

Diện tích hình thang ABCD là:(18+24)x15:2=315(cm2)

Đáp số:315cm2

hok tốt

18 tháng 4 2017

A B C D I

Gọi chiều cao của tam giác AIB và CID là a

1 phần đáy của 2 tam giác là y

Ta thấy : ( y x 3 x a ) : 2 - ( y x 2 x a ) : 2  = 193 ( cm2 )

=>  ( ( y + y + y ) x a ) : 2 - ( ( y + y ) x a ) : 2 = 193

Ta loại các thứ giống nhau thi có

y = 193

Vậy 1 phần đáy 2 tam giác là 193

Đáy bé là : 193 x 2 = 386 

Đáy lớn là : 193 x 3 = 579

( y x 3 x a ) : 2 - ( y x 2 x a ) : 2  = 193 ( cm2 )

Vậy a = 2

Chiều cao là : 2 x 2 = 4 

Diện tích hình thang là :

   ( 579 + 386 ) x 4 : 2 = 1930 ( cm2 )

9 tháng 2 2017

diện tích là:781,65

k mình~!

9 tháng 2 2017

SIAD = SIBC = 193 : 2 x 3 = 289,5 ( cm2 )

SICD = 289,5 : 2 x 3 = 434,25 ( cm2 )

=> SABCD = 434,25 + 289,5 + 289,5 + 193 = 1206,25 ( cm2 )

Chúc bạn may mắn!

24 tháng 3 2017

Ta có : \(S^{AID}=S^{BIC}\)

Mà theo đề ra : \(S^{CID}-S^{AIB}=193cm^2\)

\(\Rightarrow\left(S^{AID}+S^{CID}\right)-\left(S^{BIC}+S^{AIB}\right)=193cm^2\)

\(\Rightarrow S^{ADC}-S^{ABC}=193cm^2\)

Do \(\frac{AB}{CD}=\frac{2}{3}\Rightarrow\frac{S^{ABC}}{S^{ADC}}=\frac{2}{3}\)

\(\Rightarrow S^{ABCD}=S^{ADC}+S^{ABC}=193:\left(3-2\right)x\left(3+2\right)=965cm^2\)

Đ/S : ... ...

18 tháng 4 2017

Mình biết làm câu này nè

18 tháng 4 2017

Câu hỏi của Sóc Lá Cây - Toán lớp 5 - Học toán với OnlineMath

Tui làm đó nha

Đúng 100%

Đúng 100%

Đúng 100%

S(BCD) = S(CID) + S(BIC) = 15 + 12 = 27 cm 
hạ IH, BK vuông góc CD 
S(CID) = 1/2 * IH * CD = 15 
S(BCD) = 1/2 * BK * CD = 27 
=> S(CID)/S(BCD) = IH/BK = 15/27 = 5/9 
Tam giác DIH đồng dạng tam giác DBK (g_g) => DI/DB = IH / BK = 5/9 
=> DI/(DB-DI) = 5/ (9-5) => DI/IB = 5/4 
Tg DIC đồng dạng Tg BIA (g_g) => DC/AB = DI/BI=5/4 => AB = 4/5 * DC 
S(ABD) = 1/2 * BK * AB = 1/2 * BK * 4/5 * DC = 4/5 * S(BCD) = 4/5 * 27 = 21,6 cm2 
=> S(ABCD) = 27 + 21,6 = 48,6 cm2 

tích nha

9 tháng 4 2016

  1. S(BCD) = S(CID) + S(BIC) = 15 + 12 = 27 cm 
Hạ IH, BK vuông góc CD 
S(CID) = 1/2 * IH * CD = 15 
S(BCD) = 1/2 * BK * CD = 27 
=> S(CID)/S(BCD) = IH/BK = 15/27 = 5/9 
Tam giác DIH đồng dạng tam giác DBK (g_g) => DI/DB = IH / BK = 5/9 
=> DI/(DB-DI) = 5/ (9-5) => DI/IB = 5/4 
Tg DIC đồng dạng Tam giác BIA (g_g) => DC/AB = DI/BI=5/4 => AB = 4/5 * DC 
S(ABD) = 1/2 * BK * AB = 1/2 * BK * 4/5 * DC = 4/5 * S(BCD) = 4/5 * 27 = 21,6 cm2
=> S(ABCD) = 27 + 21,6 = 48,6 cm2

Đáp số: 48,6 cm2