Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: M là trung điểm AB
N là trung điểm AC
=> MN là đường trung bình của tam giác ABC
=> MN=1/2 BC (1)
Ta có: Q là trung điểm BD
P là trung điểm CD
=> QP là đường trung bình của tam giác DBC
=> QP=1/2 BC (2)
Từ (1) và (2) suy ra MN = QP (*)
Ta có: M là trung điểm AB
Q là trung điểm BD
=> MQ là đường trung bình của tam giác ABD
=> MQ=1/2 AD (3)
Ta có: N là trung điểm AC
P là trung điểm CD
=> NP là đường trung bình của tam giác CAD
=> NP=1/2 AD (4)
Từ (3) và (4) suy ra MQ=NP (**)
Từ (*) và (**) suy ra MNPQ là hình bình hành
a) Xét tam giác \(ABC\):
\(M,N\)lần lượt là trung điểm của \(AB,AC\)nên \(MN\)là đường trung bình của tam giác \(ABC\)
suy ra \(MN=\frac{1}{2}BC,MN//BC\).
Xét tam giác \(DBC\):
\(P,Q\)lần lượt là trung điểm của \(DC,DB\)nên \(PQ\)là đường trung bình của tam giác \(DBC\)
suy ra \(PQ=\frac{1}{2}BC,PQ//BC\).
Suy ra \(PQ=MN,PQ//MN\)
nên \(MNPQ\)là hình bình hành.
b) - \(MNPQ\)là hình thoi.
\(MNPQ\)là hình thoi suy ra \(MN=NP\).
Tương tự ý a) ta cũng chứng minh được \(NP=\frac{1}{2}AD\)
do đó suy ra \(AD=BC\)nên \(ABCD\)là hình thang cân.
- \(MNPQ\)là hình chữ nhật.
\(MNPQ\)là hình chữ nhật suy ra \(MN\perp PQ\).
Chứng minh tương tự ý a) ta cũng có \(NP//AD\)
suy ra \(BC\perp AD\).
- \(MNPQ\)là hình vuông.
\(MNPQ\)là hình vuông khi vừa là hình thoi vừa là hình chữ nhật.
a / hình bình hành
b/ AC=BD ; AB>CD ; AB<AC<CD;AB<BD<CD
c/hình vuông
(Hình thì bạn tự vẽ nha)
a) Xét tam giác BAD có: MB=MA ; QB=QD
=> MQ là đường trung bình của tam giác BAD
=> MQ // AD ; MQ = 1/2 AD (1)
Xét tam giác CAD có: NC = NA ; PC = PD
=> NP là đường trung bình của tam giác CAD
=> NP // AD ; NP = 1/2 AD (2)
Từ (1), (2) => MQ // NP ; MQ = NP
Tứ giác MNPQ có: MQ // NP ; MQ = NP
=> MNPQ là hình bình hành
b) Theo a), ta có: MQ = 1/2 AD (*)
Xét tam giác ABC có: MA = MB ; NA = NC
=>MN là đường trung bình của tam giác ABC
=> MN = 1/2 BC (**)
Từ (*), (**) và AD=BC (ABCD là thang cân)
=> MQ = MN
Hình bình hành MNPQ có MQ = MN
=> MNPQ là hình thoi
a: Xét tứ giác ABPD có
AB//PD
AB=PD
Do đó: ABPD là hình bình hành
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình
=>MN//AC và MN=AC/2(1)
Xét ΔADC có
Q là trung điểm của AD
P là trung điểm của CD
Do đó: QP là đường trung bình
=>QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
hay MNPQ là hình bình hành
b: Để MNPQ là hình thoi thì MN=MQ
hay AC=BD
xét tam giác abc có m là tđ của ab
n là tđ của ac => mn là đtb=>mn//bc
xét tam giác dbc có q là td của bd
p là tđ của dc =>qp là đtb =>qp//bc
=>mn//qp
c/m tương tự để mq//np
=.>mnpq là hbh
\(\Delta ABD\) có MA = MB; QB = QD
\(\Rightarrow\)MQ là đường trung bình của \(\Delta ABD\)
\(\Rightarrow\)MQ // AD; MQ = 1/2 AD (1)
\(\Delta CAD\)có NA = NC; PC = PD
\(\Rightarrow\)NP là đường trung bình của \(\Delta CAD\)
\(\Rightarrow\)NP // AD; NP = 1/2 AD (2)
Từ (1) và (2) suy ra: MQ = NP; MQ // NP
\(\Rightarrow\)Tứ giác MNPQ là hình bình hành
ABCD là hình thang cân \(\Rightarrow\) AD = BC
CM: MN = PQ = 1/2 BC (do MN, PQ là đường trung bình của \(\Delta ABC\)và \(\Delta DBC\))
mà MQ = NP = 1/2 AD
\(\Rightarrow\)MQ = MN
\(\Rightarrow\)hình bình hành MNPQ là hình thoi
Tam giác BCD có :
BN = NC ( gt )
DP = PC ( gt )
\(\Rightarrow\)NP là đường trung bình tam giác BCD ( 1 )
Tam giác ADB có :
AQ = QD ( gt )
AM = MB ( gt )
\(\Rightarrow\)QM là đường trung bình tam giác ADB ( 2 )
Từ ( 1 ) , ( 2 ) suy ra NP = QM , NP // QM
\(\Rightarrow\)MNEF là hình bình hành ( đến đây bạn tự chứng minh tiếp hình thoi )
c) Để MNPQ là hình vuông thì ta chứng minh ABCD là hình thang cân có 2 đường chéo vuông góc với nhau
a
Do:
MQ là đường trung bình của tam giác ABD nên MQ//BD và MQ=BD/2 (1)
NP là đường trung bình của tam giác CBD nên NP//BD và NP=BD/2 (2)
Từ (1) và (2) suy ra điều phải chứng minh ( có 2 cặp cạnh đối song song và bằng nhau )
b
MNPQ là hình chữ nhật nên QM vuông góc với MN.
Khi đó AC vuông góc với BD.
Vậy hình thang ABCD cần thêm điều kiện AC vuông góc với BD thì MNPQ là hình chữ nhật.
Bạn tự vẽ hình nha ^^ :
a ) Nối A với C , B với D :
Xét \(\Delta\)ABD ta có :
QM là đường trung bình của tam giác ( AQ=QA , AM=MB)
=>QM//BD (1)
chứng minh tương tự với \(\Delta\)BDC ta có :
PN//BD (2)
Từ (1)(2) => QM//PN (*)
chứng minh tương tự với hai tam giác ABC và DAC ta có :
QP // MN (**)
từ (*)(**) => tứ giác MNPA là hình bình hành
b) hình thành cận thị ????
c) đang làm cúp điện ^^