K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2022

Gọi đường thẳng kéo dài của đường thăng AD là xx' phân giác ngoài tại A và D cắt nhau tại M => góc MAD+MDA =1/2 xAB+1/2x'DC=1/2BAD+1/2ADC=90(2 góc trong cùng phía)

⇒AM vuông góc MD

AM kéo dài cắt DC tại Q

Trong tam giác AQD có DM phân giác và đường cao => tam GIÁC AQD cân tại D =>M là trung điểm của AQ (1)

tương tự BN vuông góc với CN và BN kéo dài cắt DC tại R

Tam giác BCR cân tại C và N trung điểm BR(2)

(1) và (2) => MN là là đường trung bình của hình thang ABRQ

=>MN//CD

9 tháng 8 2022

còn ý b nx bạn :(

 

23 tháng 8 2017

a) Gọi E, F lần lượt là giao điểm của AM và CD, BN và CD 

Ta có : AB//CD (gt) => E = A1 (so le trong)

 Mà A1 =A2 (gt) 

Nên A2 = E 

Xét ΔADE cân tại D, có DM là p/giác nên DM đồng thời là trung tuyến 

=>AM= EM 

Chứng minh tương tự, ta được : 

BN = FN 

Xét hình thang ABEF có : AM=BN(cm trên) 

BN=FN(cm trên) 

Do đó MN là đường TB của HÌNH thang ABEF 

=> MN= \(\frac{EF+AB}{2}\)

MN//AB//EF Vậy MN// CD(đpcm) 

b)Do ED= AD; BC=FC 

Mà ED + DC + CF = EF 

Nên AD + DC + BC = EF 

Lại có MN \(\frac{EF+AB}{2}\)(CM trên) 

Suy ra MN= \(\frac{AD+DC+BC+AB}{2}\)\(=\frac{a+b+c+d}{2}\)

26 tháng 7 2022

Hình như bạn sai rồi. Tại sao ED + DC + CF lại bằng EF? Ý bạn là DE + EC + CF?

16 tháng 8 2017

A B c D M N P Q

a)gọi gđ của AM và DC là P. gđ của BN và DC là Q

ta có: ^BAD+^ADC=180( và AB//DC)

=>1/2. ^BAD  +1/2.^ADC =90

=> ^MAD+^MDA = 90 ( vì AM và DM lần lượt là pg của ^A và ^D)

=> DM \(⊥\)AP

c/ tương tự ta đc: CN \(⊥\)BQ

xét tg ADP có: DM lad pg của ^D (gt) và DM\(⊥\) AP (cmt)  => tg ADP cân tại D => DM cx là dg trung tuyến ứng vs AP

=> M là t/đ của AP

c/m tương tự ta đc: tg BQC cân tại C => N là t/đ của BQ

xét hthang ABQP ( vì AB// DC mà P;Q thuộc DC)  có:

M là t/đ của AP (cmt) và N là t/đ của BQ (cmt)

=> MN là đg trung bình của hthang ABQP => MN//AB (đpcm)

b) do tg ADP cân tại D (câu a) => AD=PD =d

do tg BQC cân tại C(câu a) => BC=QC=b

 ta có MN là đg trung bình của hthang ABQP (câu a) => MN=\(\frac{1}{2}.\left(AB+PQ\right)\)

         =>MN=\(\frac{1}{2}.\left(AB+PC+CQ\right)\)

   =>MN=\(\frac{1}{2}.\left(AB+DC-PD+QC\right)\)

   =>MN=\(\frac{1}{2}.\left(AB+DC-AD+BC\right)\)  (vì PD=AD và QC=BC)

  =>MN=\(\frac{1}{2}.\left(a+c-d+b\right)\)

23 tháng 9 2019

Gọi trung điểm của AD là P

       trung điểm của BC là Q

=>PQ là đường trung bình của hình thang ABCD

=>MN//DC

Lại có góc ngoài của góc A và D kề nhau

=> hai tia phân giác của góc này hợp với nhau 1 góc 90 độ => góc M =90 độ

Tương tự có góc N =90 độ

Xét tam giác AMD có góc M =90 độ

                                       P là trung điểm của AD 

=> MP=PA=> tam giác MPA cân ở P => Góc MAP = góc AMP => MP//AB

Tương tự có QN//AB

mà MN//AB =>M, P, Q, N thẳng hàng 

=>mn//\ba.  Mà BA//DC => MN//DC

      

23 tháng 9 2019

Bạn cho mình hỏi, ở đoạn suy ra PQ là đường trung bình của hình thang ABCD, rồi suy ra MN //DC là sao? Nếu đã suy ra được rồi thì cần gì phải chứng minh đoạn dưới nữa. Ở phần đó, bạn có viết nhầm hay không? Bạn giải thích giúp mình với

28 tháng 12 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi M' và N' là giao điểm của tia AM và BN với CD.

Ta có: ∠ (M') = ∠ A 2 (sole trong)

∠ A 1 =  ∠ A 2 (gt)

⇒  ∠ (M') =  ∠ A 1 nên ∆ ADM' cân tại D

* DM là phân giác của  ∠ (ADM' )

Suy ra: DM là đường trung tuyến (tính chất tam giác cân)

⇒ AM = MM'

∠ (N') =  ∠ B 1 nên  ∆ BCN' cân tại C.

* CN là phân giác của  ∠ (BCN')

Suy ra: CN là đường trung tuyến (tính chất tam giác cân)

⇒ BN = NN'

Suy ra: MN là đường trung bình của hình thang ABN'M'

⇒ MN // M'N' (tính chất đường trung hình hình thang)

Hay MN//CD

16 tháng 10 2022

góc AMD=180 độ-góc MAD-góc MDA

\(=180^0-\dfrac{180^0-\widehat{BAD}}{2}-\dfrac{180^0-\widehat{ADC}}{2}\)

\(=180^0-\dfrac{1}{2}\widehat{ADC}-90^0+\dfrac{1}{2}\widehat{ADC}=90^0\)

Gọi giao của AM với DC là M'

Xét ΔDM'A có

DM là đường cao, là đường phân giác

nên ΔDM'A cân tại D

=>M là trung điểm của AM'

Gọi giao của BN với DC là N'

Ta có: \(\widehat{BNC}=180^0-\widehat{NBC}-\widehat{NCB}\)

\(=180^0-\dfrac{180^0-\widehat{ABC}}{2}-\dfrac{180^0-\widehat{BCD}}{2}\)

\(=180^0-90^0+\dfrac{1}{2}\widehat{ABC}-90^0+\dfrac{1}{2}\widehat{BCD}\)

=90 độ

Xét ΔCN'B có

CN vừa là đường cao, vừa là phân giác

nên ΔCN'B cân tại C

=>N là trug điểm của BN'

Xét hình thang ABN'M' có

M,N lần lượt là trung điểm của AM' và BN'

nen MN là đường trung bình

=>MN//CD

16 tháng 10 2022

a: 

góc AMD=180 độ-góc MAD-góc MDA

\(=180^0-\dfrac{180^0-\widehat{BAD}}{2}-\dfrac{180^0-\widehat{ADC}}{2}\)

\(=180^0-\dfrac{1}{2}\widehat{ADC}-90^0+\dfrac{1}{2}\widehat{ADC}=90^0\)

Gọi giao của AM với DC là M'

Xét ΔDM'A có

DM là đường cao, là đường phân giác

nên ΔDM'A cân tại D

=>M là trung điểm của AM'

Gọi giao của BN với DC là N'

Ta có: \(\widehat{BNC}=180^0-\widehat{NBC}-\widehat{NCB}\)

\(=180^0-\dfrac{180^0-\widehat{ABC}}{2}-\dfrac{180^0-\widehat{BCD}}{2}\)

\(=180^0-90^0+\dfrac{1}{2}\widehat{ABC}-90^0+\dfrac{1}{2}\widehat{BCD}\)

=90 độ

Xét ΔCN'B có

CN vừa là đường cao, vừa là phân giác

nên ΔCN'B cân tại C

=>N là trug điểm của BN'

Xét hình thang ABN'M' có

M,N lần lượt là trung điểm của AM' và BN'

nen MN là đường trung bình

=>MN//CD//AB

b: MN=(AB+M'N')/2

=(AB+M'D+CD+CN')/2

mà M'D=AD và CN'=CB

nên MN=(AB+CD+AD+CB)/2

16 tháng 10 2022

a: 

góc AMD=180 độ-góc MAD-góc MDA

\(=180^0-\dfrac{180^0-\widehat{BAD}}{2}-\dfrac{180^0-\widehat{ADC}}{2}\)

\(=180^0-\dfrac{1}{2}\widehat{ADC}-90^0+\dfrac{1}{2}\widehat{ADC}=90^0\)

Gọi giao của AM với DC là M'

Xét ΔDM'A có

DM là đường cao, là đường phân giác

nên ΔDM'A cân tại D

=>M là trung điểm của AM'

Gọi giao của BN với DC là N'

Ta có: \(\widehat{BNC}=180^0-\widehat{NBC}-\widehat{NCB}\)

\(=180^0-\dfrac{180^0-\widehat{ABC}}{2}-\dfrac{180^0-\widehat{BCD}}{2}\)

\(=180^0-90^0+\dfrac{1}{2}\widehat{ABC}-90^0+\dfrac{1}{2}\widehat{BCD}\)

=90 độ

Xét ΔCN'B có

CN vừa là đường cao, vừa là phân giác

nên ΔCN'B cân tại C

=>N là trug điểm của BN'

Xét hình thang ABN'M' có

M,N lần lượt là trung điểm của AM' và BN'

nen MN là đường trung bình

=>MN//CD//AB

b: MN=(AB+M'N')/2

=(AB+M'D+CD+CN')/2

mà M'D=AD và CN'=CB

nên MN=(AB+CD+AD+CB)/2

=>CABCD=14cm