Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : \(AB//CD\)
Mà góc B và góc C ở vị trí so le trong
\(\Rightarrow\widehat{B}+\widehat{C}=180^0\)
Lại có : \(\widehat{B}-\widehat{C}=10^0\)
\(\Rightarrow\widehat{B}=\left(180+10\right):2=95\)
Hok tốt
A B C D
Bài làm
Vì tứ gíc ABCD là hình thang
=> \(\widehat{B}+\widehat{C}=180^0\)( Tổng hai góc kề cạnh bên )
Số đo góc B là:
\(\left(180^0+10^0\right):2=95^0\)
Vậy \(\widehat{B}=95^0\)
# Học tốt #
Hình tự vẽ nhé
a,
Gọi H là chân đường cao hạ từ C, ABCH là hình vuông
\(\Rightarrow CH=BC=\frac{AD}{2}\)
Tam giác CDH có:
\(\widehat{CHD=90^o;CH=HD}\)
\(\Rightarrow CHD\)là tam giác vuông cân tại H
\(\Rightarrow\widehat{CDH}=\widehat{HCD}=45^o\)
\(\Rightarrow\widehat{BCD}=90^o+45^o=135^o\)
b, Có CH = AH
\(\Rightarrow\)Tam giác AHC vuông cân tại H. Do đó \(\widehat{ACH}=45^o\)
Mà \(\widehat{HCD}=45^o\)
\(\Rightarrow\widehat{ACD}=45^o+45^o=90^o\)
Vậy \(AC\perp CD\)( đpcm )
A B C D 2cm E 4cm 45
Kẻ \(BE\perp CD\)
Xét \(\Delta BEC\)vuông tại E có :
\(\widehat{BEC}=90^o\) ( theo cách vẽ )
Mà \(\widehat{C}=45^o\)(gt)
\(\Rightarrow\Delta BEC\)vuông cân tại E
\(\Rightarrow BE=EC\)( tính chất tam giác vuông cân )
Hay \(BE\perp DC\)(1)
Vì \(\widehat{D}=90^o\left(gt\right)\)
\(\Rightarrow AD\perp DC\left(2\right)\)
Từ (1) và (2) \(\Rightarrow AD//BE\)( từ vuông góc đến song song )
Hình thang \(ABED\) có \(AD//BE\left(cmt\right)\)
\(\Rightarrow AB=DE\)( theo nhận xét của hình thang )
Mà \(AB=2cm\left(gt\right)\)
\(\Rightarrow AB=DE=2cm\)
Ta có \(EC=CD-BE\)
\(\Rightarrow EC=4-2\)
\(\Rightarrow EC=2cm\)
Mà BE = EC (cmt)
\(\Rightarrow BE=2cm\)
\(\Rightarrow S_{ABCD}=\frac{1}{2}\left(AB+CD\right).BE=\frac{1}{2}.\left(2+4\right).2=\frac{1}{2}.6.2=6\left(cm^2\right)\)
Vậy \(S_{ABCD}=6\left(cm^2\right)\)
Chúc bạn học tốt !!!