\(\frac{MA}{MD}=\frac{2}{5}\), vẽ M...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2020

A B D C F 28 70 M N

Tớ xin phép bổ sung đề bài là : \(N\in BC\)ạ, vì nếu không có dữ kiện này thì MN có vô vàn giá trị nhé. 

Gọi F là giao điểm của MN và AC, vì \(MN//AB;AB//CD\left(gt\right)\)

\(\Rightarrow MF//AB//CD;NF//AB//CD\)

Ta có : \(\frac{MA}{MD}=\frac{2}{5}\Rightarrow\frac{MA}{AD}=\frac{2}{7}\left(M\in AD\right)\)

Áp dụng định lí Ta-lét trong \(\Delta ADC\left(MF//DC\right)\)có :

\(\frac{AF}{AC}=\frac{MA}{AD}=\frac{MF}{DC}\Rightarrow\frac{AF}{AC}=\frac{2}{7}=\frac{MF}{70}\Rightarrow MF=\frac{2\cdot70}{7}=20\)( đơn vị đo )

Vì \(\frac{AF}{AC}=\frac{2}{7}\Rightarrow\frac{CF}{AC}=\frac{5}{7}\left(F\in AC\right)\)

Áp dụng định lí Ta-lét trong \(\Delta ABC\left(NF//AB\right)\)có :

\(\frac{CF}{AC}=\frac{NF}{AB}\Rightarrow\frac{NF}{28}=\frac{5}{7}\Rightarrow NF=\frac{5\cdot28}{7}=20\)( đơn vị đo ) 

Do \(F\in MN\Rightarrow MF+NF=MN\Rightarrow MN=20+20=40\)( đơn vị đo ) 

5 tháng 3 2020

Cảm ơn Hoài An, đề bài sẽ là vẽ MN//AB, N thuộc BC nhé. Tại trưa nay vội quá tớ quên gõ vào.

15 tháng 3 2020

A B C D M N E

Ta có : \(\frac{MD}{MA}=\frac{NC}{NB}=\frac{m}{n}\)

\(\Rightarrow\frac{AM}{AD}=\frac{AM}{AM+MD}=\frac{n}{m+n}=\frac{ME}{DC}\)

và  \(\frac{NC}{BC}=\frac{NC}{NC+NB}=\frac{m}{m+n}=\frac{NE}{AB}\)

\(\Rightarrow ME=\frac{nDC}{m+n}\)

và \(NE=\frac{mAB}{m+n}\)

\(\Rightarrow MN=ME+NE=\frac{nDC+mAB}{m+n}\)(ĐPCM)

   

13 tháng 1 2021

A B C D d M N I

a, Xét tam giác ADC có : MN // DC hay MI // DC 

Theo định lí Ta - lét ta có : \(\frac{MA}{MD}=\frac{IA}{IC}\)

b, Xét tam giác ABC có : AB // MN hay AB // IN 

Theo định lí Ta - lét ta có : \(\frac{BN}{NC}=\frac{IA}{IC}\)

mà \(\frac{MA}{MD}=\frac{IA}{IC}\)( cmt )

Suy ra : \(\frac{MA}{MD}=\frac{NB}{NC}\)

24 tháng 2 2020

a) Gọi AC∩MN=G

Do MN//AB//DC theo định lý Ta-let ta có:

NB/NC=MA/MD=1/3

b) Do MG//DC ⇒AM/AD=MG/DC=1/4

MG=DC/3=5

Do GN//AB⇒CN/CB=GN/AB=3/4

suy ra GN=3AB/4=6

⇒MN=GM+GN=11cm

image

24 tháng 2 2020

( Hình vẽ thì mượn tạm nhá :33 )image

a) Ta gọi giao điểm của AC và MN là G. \(\Rightarrow\hept{\begin{cases}MG//DC//AB\\NG//DC//AB\end{cases}}\)

Ta thấy : \(MD=3MA\Rightarrow\frac{AM}{MD}=\frac{1}{3}\)

Áp dụng định lý Talet ta được :

+) \(MG//DC\Rightarrow\frac{MA}{MD}=\frac{AG}{GC}=\frac{1}{3}\) (1)

+) \(NG//AB\Rightarrow\frac{AG}{GC}=\frac{BN}{NC}=\frac{1}{3}\) ( do (1) )

Vậy : \(\frac{NP}{NC}=\frac{1}{3}\)

Phần b) Bạn biết làm rồi nên mình không trình bày nữa nhé !