Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Áp dụng định lý Ta-let cho các đoạn thẳng song song:
$OM\parallel AB\Rightarrow \frac{OM}{AB}=\frac{DM}{DA}$
$ON\parallel AB\Rightarrow \frac{ON}{AB}=\frac{CN}{CB}$
$MN\parallel AB\parallel CD\Rightarrow \frac{DM}{DA}=\frac{CN}{CB}$
Do đó: \frac{OM}{AB}=\frac{ON}{AB}\Rightarrow OM=ON$
b) Tiếp tục áp dụng định lý Ta-let:
$OM\parallel AB\Rightarrow \frac{OM}{AB}=\frac{OD}{DB}$
$ON\parallel CD\Rightarrow \frac{ON}{CD}=\frac{OB}{DB}$
$\Rightarrow \frac{OM}{AB}+\frac{ON}{CD}=\frac{OD+OB}{BD}=1(*)$
Mà $OM=ON\Rightarrow OM=ON=\frac{OM+ON}{2}=\frac{MN}{2}(**)$
Từ $(*); (**)\Rightarrow \frac{MN}{2AB}+\frac{MN}{2CD}=1$
$\Rightarrow \frac{1}{AB}+\frac{1}{CD}=\frac{2}{MN}$ (đpcm)
a) Xét tứ giác ABEC có AB // CE; AC // BE .
Vậy nên ABEC là hình bình hành. Suy ra AB = CE.
Do MN là đường trung bình hình thang ABCD nên ta có :
\(MN=\frac{AB+DC}{2}=\frac{CE+DC}{2}=\frac{DE}{2}.\)
b) Do ABCD là hình thang cân nên ta có:
\(AD=BC;DB=AC\)
Xét tam giác ABD và tam giác BAC có:
Cạnh AB chung
AD = BC
BD = AC
\(\Rightarrow\Delta ABD=\Delta BAC\left(c-c-c\right)\)
\(\Rightarrow\widehat{ABD}=\widehat{BAC}\) hay \(\widehat{ABO}=\widehat{BAO}\)
Xét tam giác OAB có \(\widehat{ABO}=\widehat{BAO}\) nê OAB là tam giác cân tại O.
c) Do ABEC là hình bình hành nên AC = BE
Lại có AC = BD nên BD = BE
Suy ra tam giác BDE cân tại B.
Tam giác cân BDE có BH là đường cao nên đồng thời là đường trung tuyến.
Lại có theo câu a thì MN = DE/2
Giả thiết lại cho MN = BH. Vậy nên BH = DE/2
Xét tam giác BDE có trung tuyến BH bằng một nửa cạnh tướng ứng nên BDE là tam giác vuông tại B.
Vậy BDE là tam giác vuông cân tại B.