K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2021
a, mình cm tam giác ABM= tam giác ACM( cạnh_ cạnh_ cạnh)/AM chung b,Vì tam giác ABM tam giác ACM => góc BAM = góc CAM( hai góc tương ứng) => AM là tia phân giác của góc BAC
21 tháng 11 2021

a) Xét t/g ABM và t/g ACM có:

AB=AC (gt)

AM chung

MB=MC (gt)

=> t/gABM=t/gACM (c.c.c)

=> ^ABM=^ACM ( 2 góc tương ứng)

b) Vì AB=AC hoặc ^ABM=^ACM (cmt)

=> AM là tia phân giác của ^BAC (đpcm)

25 tháng 1 2018

Helppppppppppppppppppppppppppppppppppppppppppp me

11 tháng 3 2018

câu a: xét \(\Delta AMB\)  và \(\Delta AMC\)có :

AB=AC(gt)

MB=MC(tam giác MBC cân)

AM là cạnh chung

\(\Rightarrow\Delta AMB=\Delta AMC\)(C.C.C)

\(\Rightarrow\)\(\widehat{BAM}=\widehat{CAM}\)

Vậy AM là tia phân giác\(\widehat{BAC}\)

B)

góc ABM= góc ACM= \(\frac{180º-20º}{2}-60º=20º\)

Vậy \(\widehat{ABM}=\widehat{ACM}=\widehat{BAC}\)

9 tháng 12 2016

bạn tự vẽ hình

a, xét tam giác ABM và tam giác ACM có :

AB=AC (gt)

MB=MC (gt)

AM là cạch chung

suy ra tam giác ABM =tam giác ACN (c.c.c)

b, Vì tam giác ABM = tam giác ACN (câu a)

suy ra góc M1= góc M2 (2 góc tương ứng)

mà M1+M2=180 ( 2 góc kề bù)

suy ra : M1=M2= 90 

suy ra AM vuông góc BC

c, Vì tam giác ABM = tam giác ACM (câu a)

suy ra : A1=A2 ( 2 góc tương ứng)

suy ra: AM là phân giác góc BAC

9 tháng 12 2016

bn vẽ hình giùm mik nha

a) xét tam giác ABM và tam giác ACM có:

AM cạnh chung

BM=MC(M trđ BC)

AB=AC(gt)

Nên tam giác ABM = tam giác ACM(ccc)

b) Từ c/m a có: tam giác ABM=tam giác ACM => góc AMB = góc AMC mà AMB+AMC=180 độ(kề bù)

hay 2.AMB=180 độ => AMB=90 độ => AM vuông BC

c) Có tam giác ABM = tam giác ACM => BAM=CAM kết hợp AM nằm giữa AB và AC => AM p/g BAC

25 tháng 12 2018

Tự vẽ hình (câu c thiếu điều kiện để vẽ điểm F)
a) Xét \(\Delta ABM\) và \(\Delta ACM\) có:
AB=AC
BM=MC
AM chung
\(\Rightarrow\Delta ABM=\Delta ACM\left(C.C.C\right)\)
b) \(\Delta ABC\)vuông tạ A (AB=AC). M là trung điểm của BC => AM Vừa là đường cao, đường trung trực, đường phân giác
c) Thiếu điều kiện vẽ điểm F

26 tháng 2 2021

a) Xét tg ABM và ACM có :

AB=AC(gt)

AM-cạnh chung

MB=MB(gt)

=> Tg ABM=ACM(c.c.c)

\(\Rightarrow\widehat{BAM}=\widehat{CAM}\)

=> AM là tia pg góc A (đccm)

b) Xét tg BNC và DNC có :

BC=CD(gt)

\(\widehat{DCN}=\widehat{BCN}\left(gt\right)\)

NC-cạnh chung

=> Tg BNC=DNC(c.g.c)

\(\Rightarrow\widehat{CND}=\widehat{CNB}=\frac{\widehat{DNB}}{2}=\frac{180^o}{2}=90^o\)

\(\Rightarrow CN\perp BD\left(đccm\right)\)

c) Có : AB=AC(gt)

=> Tg ABC cân tịa A

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)(1)

- Do tg BNC=DNC(cmt)

\(\widehat{ABC}=\widehat{BDC}\)(2)

- Từ (1) và (2)\(\Rightarrow\widehat{BDC}=\widehat{ACB}\)

- Có : \(\widehat{ADC}+\widehat{BDC}=180^o\)

        \(\widehat{ACB}+\widehat{BCE}=180^o\)

Mà : \(\widehat{BDC}=\widehat{ACB}\left(cmt\right)\)

\(\Rightarrow\widehat{BCE}=\widehat{ADC}\left(đccm\right)\)

d) Xét tg ACD và EBC có :

BC=CD(gt)

DA=CE(gt)

\(\widehat{BCE}=\widehat{ADC}\left(cmt\right)\)

=> Tg ACD=EBC(c.g.c)

=> AC=BE

Mà AC=AB(gt)

=> BE=AB (đccm)

#H

8 tháng 3 2020

a/ Xét ΔABM;ΔACMΔABM;ΔACM có :

⎧⎩⎨⎪⎪AB=ACBˆ=CˆMB=MC{AB=ACB^=C^MB=MC

⇔ΔAMB=ΔAMC(c−g−c)⇔ΔAMB=ΔAMC(c−g−c)

b/ Xét ΔBHM;ΔCKMΔBHM;ΔCKM có :

⎧⎩⎨⎪⎪⎪⎪BHMˆ=CKMˆ=900Bˆ=CˆMB=MC{BHM^=CKM^=900B^=C^MB=MC

⇔ΔBHM=ΔCKM(ch−gn)⇔ΔBHM=ΔCKM(ch−gn)

⇔BH=CK

8 tháng 3 2020

BCE=ADC nhes cacs banj