Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
N O A B
Gọi các điểm của hình sao như hình trên.
Theo đề ta có: \(AB=a\)
Mà \(AN=NB\)và \(AN+NB=AB\)
Nên \(AN=NB=\frac{AB}{2}=\frac{a}{2}\)
Ta lại có: \(NOB=\frac{1}{2}B=\frac{1}{2}.36^o=18^o\)
Xét tam giác NBO vuông tại N
\(NB=OB.\cos18^o\Rightarrow OB=\frac{NB}{\cos18^o}=\frac{a}{2\cos18^o}\)
Vậy bán kính đường tròn ngoại tiếp là \(R=\frac{a}{2\cos18^o}\)
Một cửa quay bao gồm 3 cánh cửa có khả năng quay trong một căn phòng hình tròn. Đường kính của căn phòng này là 2 mét (200cm). 3 cánh cửa chia căn phòng ra làm 3 phần có diện tích bằng nhau. Sau đây là sơ đồ cánh cửa tại các vị trí khác nhau, khi nhìn từ góc thẳng đứng phía trên:
2 phần cửa ra vào (phần nét đứt) có kích thước bằng nhau. Nếu phần cửa ra và cửa vào có kích cỡ quá lớn, các cánh cửa sẽ không thể ngăn cách không gian; một luồng không khí có thể đi thẳng qua 2 cánh cửa, từ bên ngoài tòa nhà vào bên trong tòa nhà (gây tăng/giảm nhiệt độ trong nhà một cách không mong muốn). Nhìn hình dưới đây để hình dung ra đường đi của luồng không khí trong trường hợp kích cỡ của 2 cánh cửa quá lớn.
Vậy, chiều dài tối đa của đường cong nét đứt của mỗi phần cửa ra/vào là gì, để không khí không thể đi thẳng từ cửa ra tới cửa vào và ngược lại?
Câu trả lời
Điểm tối đa: Câu trả lời là từ 103 tới 105. Câu trả lời được chấp nhận được tính bởi công thức bằng 1/6 của chu vi hình tròn bao quanh căn phòng. Câu trả lời bằng 100 cũng được chấp nhận, nếu thí sinh tính pi = 3. Nếu trả lời là 100 và không đưa ra giải thích như trên, câu trả lời sẽ không được tính điểm (bởi thí sinh có thể đã đoán câu trả lời bằng với chiều dài của cánh cửa, tức là bán kính của hình tròn).
Không tính điểm: Tất cả các câu trả lời khác. Không tính câu trả lời 209 (tương đương với tổng kích cỡ của cả 2 cửa, thay vì mỗi cửa như yêu cầu đề bài).
Nối các đỉnh của ngôi sao lại ta có hình ngũ giác đều nội tiếp đường tròn tâm O.
Vì là ngũ giác đều nội tiếp đường tròn tâm O nên ta có khoản cách từ O đến các đỉnh là như nhau và bằng R.
Góc tạo bởi hai đỉnh liên tiếp là
\(\frac{360}{5}=\:72°\)
Gọi khoản cách giữa 2 đỉnh liên tiếp là a thì ta có
\(a^2=R^2+R^2-2R^2\cos72°\)
Tới đây bạn tự bấm máy tính đi nhé