Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi I,J lần lượt là trọng tâm của các tam giác ABC và...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2017

Đáp án C

Xét tam giác A’B’C’:

Gọi N là trung điểm B’C’

J là trọng tâm A’B’C’

Xét tam giác ABC:

Gọi M là trung điểm BC

I là trọng tâm ABC

Từ (1), (2), ta có IJ // MN

Xét (AIJ) và (B’C’CB) có:

M là điểm chung

IJ // MN

⇒ giao tuyến của (AIJ) và (B’C’CB) là MN

⇒ thiết diện cần tìm là mặt phẳng (A’NMA)

Xét (A’NMA) có: A’A // MN và A’A = MN ( // = BB’)

A’NMA là hình hình hành

8 tháng 4 2019

Đáp án D

Gọi E và F lần lượt là trung điểm của B’C’ và BC

Xét (AIJ) và (ABC) có: F ∈ AI ⇒ F ∈ (AIJ) ⇒ (AIJ) ∩ (ABC) =  AF

Xét ( AIJ) và (B’C’CB) có :         F là điểm chung

IJ // (B’C’CB) ( I; J lần lượt là trọng tâm tam giác ABC và A’B’C’)

⇒ giao tuyến của 2 mặt phẳng là đường thẳng a đi qua F và song song IJ

a cắt B’C’ tại E

⇒ (AIJ) ∩ (B’C’CB) = EF

Xét ( AIJ) và (A’B’C’) có:

E là điểm chung

AF // (A’B’C’)

⇒ giao tuyến 2 mặt phẳng là đường thẳng b đi qua E và song song AF

(AIJ) ∩ (A’B’C’) = A’E

Xét A’EFA có: AA’ // EF ( // IJ)

                        A’E // AF

A’EFA là hình bình hành

24 tháng 7 2019

Chọn D

Gọi M, M' lần lượt là trung điểm của BC và B’C’. Khi đó thiết diện của lăng trụ tạo bởi mặt phẳng (AGG') là hình chữ nhật AMM'A’.

Mà  A M ’ = a . s i n 60 0 = a 3 2 ≠ A A ’

Nên AMM’A’ không thể là hình vuông.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023


a) Ta có ABC.A'B'C' là hình lăng trụ nên \(\Delta ABC = \Delta A'B'C'\) suy ra AG = A'G'.

Lại có (ABC) // (A'B'C'), giao tuyến của mp(AGG'A') với (ABC) và (A'B'C')  lần lượt là AG, A'G' suy ra AG // A'G'.

Như vậy , tứ giác AGG'A' có AG = A'G', AG // A'G' là hình bình hành.

b) AGG'A' là hình bình hành suy ta AA' // GG'.

Lại có AA' // CC' (do ABC.A'B'C' là hình lăng trụ).

Mặt phẳng (AGC) // (A'G'C') suy ra AGC.A'G'C' là hình lăng trụ.

20 tháng 7 2017

Gọi MNE lần lượt là trung điểm của BCCC′B′C′.

 Suy ra (tính chất trọng tâm tam giác) nên IJ // MN  (1).

Trong mặt phẳng (AA′ME) ta có

IK // ME

mà ME // BB′ nên IK // BB′  (2).

Từ (1) và (2) do (IJK) và  (BB′C′) là hai mặt phẳng phân biệt

IJ; IK (IJK)

Nên IJ // (BB′C′), IK // (BB′C′)

Suy ra (IJK) // (BB′C′)

Đáp án cần chọn là: C

26 tháng 5 2017

Hỏi đáp Toán

2 tháng 8 2017

Đáp án B

Xét (A’B’C’) và (A’BC) có:

A’ là điểm chung

B’C’ // BC

 giao tuyến của 2 mặt phẳng là đường thẳng d qua A’ song song với B’C’

⇒ d và B’C’ đồng phẳng

Mà d chứa A’

⇒ d thuộc mặt phẳng (A’B’C’)

Mà H ∈ A’B’H(A’B’C’)

⇒ Mặt phẳng đi qua d và H, cắt tứ diện ABC. A’B’C’ là (A’B’C’)

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

31 tháng 3 2017

Lời giải:

a) Tứ giác DBB'D' là hình bình hành nên  BD // B'D' . Vì vậy BD // (B'D'C) và BA' // CD' \(\Rightarrow\) BA' // ( B'D'C).

Từ đó suy ra ( BDA') //B'D'C).

b) Gọi {G_{1}}^{}, {G_{2}}^{} là giao điểm của AC' với A'O và CO'.
Do \(G_1=A'O\cap AI\) và A'O và AI là hai đường trung tuyến của tam giác nên \(G_1\) là trọng tâm của tam giác A'AC.
Chứng minh tương tự \(G_2\) là trọng tâm tam giác CAC'.
Suy ra \(\dfrac{AG_1}{AO}=\dfrac{2}{3}\)\(\dfrac{CG_2}{CO}=\dfrac{2}{3}\) nên đường chéo AC'  đi qua trọng tâm của hai tam giác BDA' và B'D'C.

c) Do O và O' lần lượt là trung điểm của AC và A'C' nên \(OC=A'O'\) và OC' // A'O'.
Vì vậy tứ giác OCO'A là hình bình hành và OA'//OC.
Từ đó ta chứng minh được \(G_1\) lần lượt là trung điểm của \(AG_1\) và \(G_2\) là trung điểm của \(G_1C'\).
Do đó: \(AG_1=G_1G_2=G_2C\) (đpcm).
d) \(\left(A'IO\right)=\left(AA'C'C\right)\). Nên thiết diện cần tìm là (AA'C'C).
 

31 tháng 3 2017

d) (A'IO) ≡ (AA'C'C) suy ra thiết diện là AA'C'C

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song