K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 4 2022

Gọi O là giao điểm AC và BD

Do lăng trụ đều \(\Rightarrow AC\perp\left(BDD'B'\right)\Rightarrow AC\perp\left(EOF\right)\)

\(V_{ACEF}=V_{AOEF}+V_{COEF}=2V_{AOEF}=\dfrac{2}{3}AO.S_{OEF}=\dfrac{a\sqrt{2}}{3}.S_{OEF}\)

Đặt \(BE=x;\) \(DF=y\), trên BB' lấy G sao cho \(BG=DF=y\)

\(\Rightarrow FG=BD=a\sqrt{2}\) và \(EG=\left|x-y\right|\)

 \(\Rightarrow EF=\sqrt{EG^2+FG^2}=\sqrt{2a^2+\left(x-y\right)^2}\)

\(OE=\sqrt{OB^2+BE^2}=\sqrt{\dfrac{a^2}{2}+x^2}\) ; \(OF=\sqrt{OD^2+DF^2}=\sqrt{\dfrac{a^2}{2}+y^2}\)

Do \(\left(EAC\right)\perp\left(FAC\right)\Rightarrow OE\perp OF\)

\(\Rightarrow OE^2+OF^2=EF^2\)

\(\Rightarrow a^2+x^2+y^2=2a^2+\left(x-y\right)^2\Rightarrow xy=\dfrac{a^2}{2}\)

\(S_{OEF}=\dfrac{1}{2}OE.OF=\dfrac{1}{2}\sqrt{\left(\dfrac{a^2}{2}+x^2\right)\left(\dfrac{a^2}{2}+y^2\right)}=\dfrac{1}{2}\sqrt{\dfrac{a^4}{4}+\left(xy\right)^2+\dfrac{a^2}{2}\left(x^2+y^2\right)}\)

\(=\dfrac{1}{2}\sqrt{\dfrac{a^4}{2}+\dfrac{a^2}{2}\left(x^2+y^2\right)}\ge\dfrac{1}{2}\sqrt{\dfrac{a^4}{2}+\dfrac{a^2}{2}.2xy}=\dfrac{1}{2}\sqrt{\dfrac{a^4}{2}+a^2.\dfrac{a^2}{2}}=\dfrac{a^2}{2}\)

\(\Rightarrow V_{ACEF}\ge\dfrac{a\sqrt{2}}{3}.\dfrac{a^2}{2}=\dfrac{a^3\sqrt{2}}{6}\)

Dấu "=" xảy ra khi \(x=y=\dfrac{a\sqrt{2}}{2}\)

NV
6 tháng 4 2022

undefined

22 tháng 6 2019

Bạn thử tải app này xem có đáp án không nhé <3 https://giaingay.com.vn/downapp.html

29 tháng 10 2022

Chọn B

NV
31 tháng 8 2021

\(AC=AB\sqrt{2}=4a\)

Áp dụng định lý Pitago:

\(CC'=\sqrt{\left(AC'\right)^2-AC^2}=3a\)

\(\Rightarrow V=3a.\left(2a\sqrt{2}\right)^2=24a^3\)

Chọn A

1 tháng 9 2021

@Nguyễn Việt Lâm anh giúp em câu này với

NV
7 tháng 7 2021

Đề bài thiếu dữ liệu cạnh của 2 tam giác đáy

 

NV
7 tháng 7 2021

\(B'N=2BN\Rightarrow BN=\dfrac{1}{3}BB'=2a\)

Qua N lần lượt kẻ các đường thẳng song song AB và BC, chúng cắt AA' tại E và CC' tại F

\(\Rightarrow AE=BN=CF=2a\Rightarrow PF=ME=\dfrac{6a}{2}-2a=a\)

\(NF=NE=AB=BC=a\)

\(\Rightarrow MN=NP=\sqrt{a^2+a^2}=a\sqrt{2}\)

\(\Rightarrow S_{MNP}=\dfrac{a^2\sqrt{7}}{4}\) (công thức Herong, hoặc kẻ NH vuông góc MP và tính NH theo Pitago với tam giác MNP cân tại N)

\(S_{ABC}=\dfrac{a^2\sqrt{3}}{4}\)

Do MA, NB, PC vuông góc (ABC) \(\Rightarrow\) ABC là hình chiếu vuông góc của MNP lên (ABC)

\(\Rightarrow cos\alpha=\dfrac{S_{ABC}}{S_{MNP}}=\sqrt{\dfrac{3}{7}}\Rightarrow\alpha\)

29 tháng 10 2021

mn giúp mk vớiiiiiiiiii

NV
1 tháng 11 2021

Gọi H là hình chiếu vuông góc của A' lên (ABCD)

Do \(A'A=A'B=A'D\) \(\Rightarrow H\) trùng tâm đường tròn ngoại tiếp tam giác ABD

\(\Rightarrow H\) là trung điểm BD

\(AC=\sqrt{AB^2+AD^2}=2a\)\(\Rightarrow AH=\dfrac{1}{2}AC=a\)

\(\Rightarrow A'H=\sqrt{A'A^2-AH^2}=a\sqrt{3}\)

\(\Rightarrow V=A'H.AB.AD=3a^3\)