K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2017

Hình nhận được là một hình trụ đứng DABC.HFEI

24 tháng 9 2017

a) Đáy của hình lăng trụ đứng là một tam giác vuông cân

b) Các mặt bên nhận được không phải tất cả là hình vuông

\(\Bigg(\) hai hình vuông và một hình chữ nhật \(\Bigg)\)

10 tháng 6 2017

a)Ta có E là trung điểm của CM (gt)
F là trung điểm của CB (gt)
\(\Rightarrow\) EF là đường trung bình của (định nghĩa đường trung bình của tam giác)
\(\Rightarrow\) EF//MB (tính chất đường trung bình của tam giác)
hay EF//AB
lại có K là trung điểm của AD (gt)
F là trung điểm của CB (gt)
\(\Rightarrow\) KF là đường trung bình của (...)
\(\Rightarrow\) KF//AM (t/c ...)
hay KF//AB
nên EF//KF (vì cùng // với AB)
\(\Rightarrow\) tứ giác EFFIK là hình thang (Định nghĩa hình thang)

Gọi N là trung điểm của AM, nối KM
Ta có N là trung điểm của AM (cách dựng)
K là trung điểm của AD (gt)
\(\Rightarrow\) NK là đường trung bình của
nên NK//DM (t/c....)
mà EN là đường trung bình của (E,I là trung điểm của MC,AM)
\(\Rightarrow\) EI//AC (t/c...)
lại có là những tam giác đều (gt)
\(\Rightarrow\)
\(\Rightarrow\) AC//DM
tức là NK//EN (cùng //AC//DM)
do đó 3 điểm E,K,N thẳng hàng (theo tiên đề Ơ-clit)
(2góc đồng vị của AC//EN)
(2 góc đồng vị của KF//AM)
nên
C/m tương tự, lấy P là trung điểm của BM ta cũng được
Hình thang EFIK có
Vậy EFIK là hình thang cân (dấu hiệu nhận biết)

b) Ta có EFIK là hình thang cân (kq câu a)
\Rightarrow EI=KF (tính chất 2 đường chéo trong hình thang cân)
E là trung điểm của CM, I là trung điểm của DM (gt)
\(\Rightarrow\) EI là đường trung bình của tam giác CMD
\(\Rightarrow\) EI=
Vậy KF=

8 tháng 10 2019

Bài 64 (trang 100 SGK Toán 8 Tập 1): Cho hình bình hành ABCD. Các tia phân giác của các góc A, B, C, D cắt nhau như trên hình 91. Chứng minh rằng EFGH là hình chữ nhật.

Giải bài 64 trang 100 Toán 8 Tập 1 | Giải bài tập Toán 8

 
8 tháng 10 2019

Theo giả thiết ABCD là hình bình hành nên ta có:

ˆDAB=ˆDCB,ˆADC=ˆABC         (1)

Theo định lí tổng các góc của một tứ giác ta có:

ˆDAB+ˆDCB+ˆADC+ˆABC=360o                (2)

Từ (1) và (2) ⇒ˆDAB+ˆABC=360o/2=180o

Vì AG là tia phân giác ˆDAB (giả thiết)

⇒⇒ ˆBAG=1/2ˆDAB (tính chất tia phân giác)

Vì BG là tia phân giác ˆABC (giả thiết)

⇒⇒  ˆABG=1/2ˆABC

Do đó: ˆBAG+ˆABG=1/2(ˆDAB+ˆABC)=1/2.1800=90o

Xét ΔAGB= có:

ˆBAG+ˆABG=90o   (3)

Áp dụng định lí tổng ba góc trong một tam giác vào tam giác AGBAGB ta có:

ˆBAG+ˆABG+ˆAGB=180o            (4)

Từ (3) và (4) ⇒ˆAGB=90o      

Chứng minh tương tự ta được: ˆDEC=ˆEHG=90o

Tứ giác EFGH có ba góc vuông nên là hình chữ nhật (dấu hiệu nhận biết hình chữ nhật)

30 tháng 6 2020

A E B H D G F C

Ta có: EB = EA, FB = FC (gt)

⇒ EF là đường trung bình của ΔABC

⇒ EF // AC và EF = AC/2.

HA = HD, HC = GD

⇒ HG là đường trung bình của ΔADC

⇒ HG // AC và HG = AC/2.

Do đó EF // HG, EF = HG

⇒ EFGH là hình bình hành.

a) Hình bình hành EFGH là hình chữ nhật

<=> EH ⊥ EF

<=>\(AC\perp BD\) (vì EH // BD, EF// AC)

b) Hình bình hành EFGH là hình thoi

<=>EF = EH

<=> AC = BD (Vì \(EF=\frac{AC}{2},EH=\frac{BD}{2}\))

c) EFGH là hình vuông

<=> EFGH là hình thoi và EFGH là hình chữ nhật

<=> AC = BD và .\(AC\perp DB\)

5 tháng 8 2021

a) Trong tam giác ADC, ta có:

E là trung điểm của AD (gt)

I là trung điểm của AC (gt)

Nên EI là đường trung bình của ∆ ABC

⇒ EI // CD (tính chất đường trung bình của tam giác)

Trong tam giác ABC ta có:

I là trung điểm của AC

F là trung điểm của BC

Nên IF là đường trung bình của ∆ ABC

⇒ IF // AB (tính chất đường trung bình của tam giác)

b) Câu b đou

5 tháng 8 2021

em nào địt với anh ko

Bài 1. Cho tứ giác ABCD. Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA. Các đường chéo AC, BD của tứ giác ABCD thoả điều kiện gì thì tứ giác EFGH là: a) Hình chữ nhật. b) Hình thoi. c) Hình vuông. Bài 2. Cho tam giác...
Đọc tiếp

Bài 1. Cho tứ giác ABCD. Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA. Các đường chéo AC, BD của tứ giác ABCD thoả điều kiện gì thì tứ giác EFGH là:

a) Hình chữ nhật.

b) Hình thoi.

c) Hình vuông.

Bài 2. Cho tam giác ABC cân tại A, trung tuyến AM. Gọi I là trung điểm của AC, K là điểm đối xứng của điểm M qua điểm I.

a) Tứ giác AMCK là hình gì?

b) Tứ giác AKMB là hình gì?

c) Có trường hợp nào của tam giác ABC để tứ giác AKMB là hình thoi.

ĐS: a) AMCK là hình chữ nhật b) AKMB là hình bình hành c) Không.

Bài 3. Cho tam giác ABC vuông tại A. Về phia ngoài tam giác, vẽ các hình vuông ABDE, ACGH.

a) Chứng minh tứ giác BCHE là hình thang cân.

b) Vẽ đường cao AK của tam giác ABC. Chứng minh AK, DE, GH đồng qui.

Bài 4. Cho hình thang cân ABCD với AB // CD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA.

a) Tứ giác MNPQ là hình gì?

b) Cho biết diện tích tứ giác ABCD bằng \(30m^2\). Tính diện tích tứ giác MNPQ.

Bài 5. Cho tam giác ABC vuông tại A, trung tuyến AM. Gọi D là trung điểm của AB, E là điểm đối xứng của điểm M qua điểm D.

a) Chứng minh điểm E đối xứng với điểm M qua đường thẳng AB.

b) Các tứ giác AEMC, AEBM là hình gì?

c) Cho BC = 4cm. Tính chu vi tứ giác AEBM.

d) Tam giác vuông thoả điều kiện gì thì AEBM là hình vuông.

Bài 6. Cho hình bình hành ABCD, O là giao điểm hai đường chéo. Gọi M, N lần lượt là trung điểm của các cạnh AD, BC. Các đường thẳng BM, DN cắt đường chéo AC tại P, Q.

a) Chứng minh AP = PQ = QC.

b) Tứ giác MPNQ là hình gì?

c) Xác định tỉ số \(\frac{CA}{CD}\) để MPNQ là hình chữ nhật.

d) Xác định góc ACD để MPNQ là hình thoi.

e) Tam giác ACD thoả mãn điều kiện gì để MPNQ là hình vuông.

Bài 7. Cho hình thoi ABCD, O là giao điểm của hai đường chéo. Vẽ đường thẳng qua B song song với AC, đường thẳng qua C song song với BD, hai đường thẳng đó cắt nhau ở K.

a) Tứ giác OBKC là hình gì?

b) Chứng minh AB = OK.

c) Tìm điều kiện của hình thoi ABCD để OBKC là hình vuông.

ĐS: a) OBKC là hình chữ nhật c) ABCD là hình vuông.

Bài 8. Cho hình bình hành ABCD có BC = 2AB và góc A =600. Gọi E, F lần lượt là trung điểm của BC và AD.

a) Tứ giác ECDF là hình gì?

b) Tứ giác ABED là hình gì?

c) Tính số đo của góc AED.

Bài 9. Cho hình thang ABCD (AB // CD). Gọi E, F theo thứ tự là trung điểm của AB, CD. Gọi O là trung điểm của EF. Qua O vẽ đường thẳng song song với AB, cắt AD và BC theo thứ tự tại M và N.

a) Tứ giác EMFN là hình gì?

b) Hình thang ABCD có thêm điều kiện gì để EMFN là hình thoi.

c) Hình thang ABCD có thêm điều kiện gì để EMFN là hình vuông.

Bài 10. Cho tam giác ABC vuông tại A với AB = AC = a.

a) Lấy điểm D trên cạnh AC và điểm E trên cạnh AB sao cho AD = AE. Các đường thẳng vuông góc với EC vẽ từ A và D lần lượt cắt cạnh BC ở K và L. Chứng minh BK = KL.

b) Một hình chữ nhật APMN thay đổi có đỉnh P trên cạnh AB, đỉnh N trên cạnh AC và có chu vi luôn bằng \(2a\). Điểm M di chuyển trên đường nào?

c) Chứng minh khi hình chữ nhật APMN thay đổi thì đường vuông góc vẽ từ M xuống đường chéo PN luôn đi qua một điểm cố định.

ĐS: b) M di chuyển trên cạnh BC c) HM đi qua điểm I cố định (với ACIB là hình vuông).

Bài 11. Cho hình vuông ABCD. E là điểm trên cạnh DC, F là điểm trên tia đối của tia BC sao cho BF = DE.

a) Chứng minh tam giác AEF vuông cân.

b) Gọi I là trung điểm của EF. Chứng minh I thuộc BD.

c) Lấy điểm K đối xứng với A qua I. Chứng minh tứ giác AEKF là hình vuông.

Bài 12. Cho hình bình hành ABCD có AD = 2AB, góc A=600. Gọi E và F lần lượt là trung điểm của BC và AD.

a) Chứng minh AE\(\perp\)BF.

b) Chứng minh tứ giác BFDC là hình thang cân.

c) Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.

d) Chứng minh ba điểm M, E, D thẳng hàng.

Bài 13. Cho tam giác ABC vuông tại A có \(\widehat{BAC}=\)900. Kẻ tia Ax song song với BC. Trên Ax lấy điểm D sao cho AD = DC.

a) Tính số đo các góc BAD, DAC

b) Chứng minh tứ giác ABCD là hình thang cân.

c) Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.

Bài 14. Cho ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Gọi K là giao điểm của AC và DM, L là trung điểm của BD và CM.

a) Tứ giác MNPQ là hình gì?

b) Tứ giác MDPB là hình gì?

c) Chứng minh: AK = KL = LC.

Bài 15. Cho hình bình hành ABCD có AB = 2AD. Gọi E, F thứ tự là trung điểm của AB và CD.

a) Các tứ giác AEFD, AECF là hình gì?

b) Gọi M là giao điểm của AF và DE, N là giao điểm của BF và CE. Chứng minh rằng tứ giác EMFN là hình chữ nhật.

c) Hình bình hành ABCD nói trên có thêm điều kiện gì để EMFN là hình vuông?

Bài 16. Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M qua AB, E là giao điểm của MH và AB. Gọi K là điểm đối xứng với M qua AC, F là giao điểm của MK và AC.

a) Xác định dạng của tứ giác AEMF, AMBH, AMCK.

b) Chứng minh rằng H đối xứng với K qua A.

c) Tam giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông?

23
15 tháng 12 2016

bạn có nikc face ko. vô đó mk gửi bài qua cho

28 tháng 7 2017

Bài 1: Giải: Xét tam giác ACD có F,G lần lượt là trung điểm AC,DC nên FG là đường trung bình
\(\Rightarrow\)\(FG//AD\)
C/m tương tự đc \(EH//AD; GH//EF//BC\)
\(\Rightarrow EFGH\) là hình bình hành
a/Để EFGH là hình chữ nhật thì góc \(FGH=90^o\)
\(\Rightarrow góc HGD+góc FGC=90^o\)
Mà góc HGD=góc BCD;góc FGC= góc ADC ( góc đồng vị = nhau)
\(\Rightarrow\) góc BCD+góc ADC=\(90^o\)
\(\Rightarrow\)Để EFGH là hình chữ nhật thì tứ giác ABCD cần có góc BCD+góc ADC=\(90^o\)
b/Để EFGH là hình thoi thì FG=HG
Mà FG=1/2AD; HG=1/2BC
\(\Rightarrow\)AD=BC
\(\Rightarrow\)Để EFGH là hình thoi thì tứ giác ABCD có AD=BC
c/ để EFGH là hình vuông thì EFGH phải vừa là hình chữ nhật vừa là hình thoi\(\Rightarrow \)ABCD phải có đủ cả 2 điều kiện trên

22 tháng 4 2017

Với hình hộp chữ nhật ABCD. A 1B1C1D1

a) Nếu O là trung điểm của đoạn CB1 thì O cũng là trung điểm của đoạn C1B vì CBB1C1 là hình chữ nhật nên hai đường chéo có chung một trung điểm.

b) K là điểm thuộc cạnh CD thì K không thuộc cạnh BB1 vì bốn điểm C, D, B, B1 không thuộc một mặt phẳng