Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong hình thang cân ABCD (AB//CD) đặt m là sđ góc D (m<180 độ ) thì:D=C=m và A=B=180 độ-m
Tam giác ABD cân tại A =>^ABD=^ADB
AB//CD tạo với cát tuyến BD 2 góc so le trong ^ABD=^CDB
Suy ra ^ADB=^CDB,lại có tia DB nằm giữa 2 tia DA và DC nên tia DB là tia phân giác ^ADC=m độ
Vậy ^ABD= (1/2).m
Tam giác BCD cân tại D =>^DBC=^DCB=m độ
Tia BD nằm giữa 2 tia BA,BC nên ^ABC=^ABD+^DBC=(1/2).m+m (độ)
=(3/2).m (độ)
Mà ^ABC=180-m (độ),nên (3/2).m(độ)=180-m(độ)
hay 5/2.m=180 độ => m=360độ:5=72 độ
và 180 độ-m=108 độ
Trả lời : Trong hình thang cân ABCD kể trên,sđ 2 góc nhọn C và D là 72 độ,sđ 2 góc còn lại là 108 độ
a: Xét ΔABC có
MN//BC
nên \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
mà AB=AC
nên AM=AN
Xét ΔAMN có AM=AN
nên ΔAMN cân tại A
a) Ta có: MN//BC(gt)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{AMN}=\widehat{ABC}\\\widehat{ANM}=\widehat{ACB}\end{matrix}\right.\)
Mà \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)
\(\Rightarrow\widehat{AMN}=\widehat{ANM}\)
=> Tam giác AMN cân tại A
b) Xét tứ giác BMNC có:
MN//BC
\(\widehat{ABC}=\widehat{ACB}\)(Tam giác ABC cân tại A)
=> BMNC là hthang cân
c) Ta có: BMNC là hthang cân
=> BN=MC
câu a nè:
Tam giác ABD cân suy ra góc A=D=45
ACE cân => Góc A=E=45
Tính tổng 3 góc ở đỉnh A =180 => thẳng hàng
a: \(\widehat{ACD}+\widehat{ACB}=90^0\)
\(\widehat{ADC}+\widehat{B}=90^0\)
mà \(\widehat{ACB}=\widehat{B}\)
nên \(\widehat{ACD}=\widehat{ADC}\)
hay ΔADC cân tại A
b: Xét ΔBFD có
FA là đường cao
FA là đường trung tuyến
Do đó: ΔBFD cân tại F