K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2018

Thời gian có hạn copy cái này hộ mình vào google xem nha :

https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi

Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....

Có 500 giải nhanh nha đã có 460 người nhận rồi

O

12 tháng 3 2016

minh cung tra lam duoc dau nhung dap an la 30

22 tháng 3 2020

Bạn tự vẽ hình nhé!
Giải

a) Ta có:

\(\widehat{EAF}+\widehat{EAB}+\widehat{BAD}+\widehat{DAF}=360^0\)

\(\Rightarrow\widehat{EAF}+60^0+60^0+110^0=360^0\)

\(\Rightarrow\widehat{EAF}=130^o\)

b) Vì ABCD là hình bình hành nên:

\(\widehat{BAD}+\widehat{ADC}=180^o\)

\(110^o+\widehat{ADC}=180^o\)

\(\Rightarrow\widehat{ADC}=70^o\)

\(\Rightarrow\widehat{CDF}=\widehat{ADC}+\widehat{ADF}=70^o+60^o=130^o\)

Xét \(\Delta\)EAF và \(\Delta\)CDF có:\(\hept{\begin{cases}AE=DC\left(=AB\right)\\AF=DF\\\widehat{EAF}=\widehat{CDF}=130^o\end{cases}\Rightarrow\Delta EAF=\Delta CDF\left(cgc\right)}\)

c) Ta có: \(\Delta EAF=\Delta CDF\left(cmt\right)\Rightarrow EF=CF\)

Tương tự cũng có: \(\Delta CDF=\Delta EBC\left(cgc\right)\Rightarrow CF=EC\)

\(\Rightarrow\Delta\)EFC là tam giác đều (đpcm)

10 tháng 9 2017

Hình bình hành lớp 8? | Yahoo Hỏi & Đáp

10 tháng 9 2017

Tính góc EAF 

EAF^ = 360* - (DAF^ + BAD^ + BAE^) = 360* - (60* + a + 60*) = 240* - a (1) 

b) Chứng minh rằng tam giác CEF là tam giác đều 

ABC^ = ADC^ = 180* - a 

=> CDF^ = ADC^ + ADF^ = 180* - a + 60* = 240* - a (2) 

CBE^ = ABC^ + ABE^ = 180* - a + 60* = 240* - a (3) 

AF = DF = AD = BC (4) 

CD = AB = BE = AE (5) 

(1) (2) (3) (4) và (5) => Δ CDF = ΔEBC = Δ EAF ( c.g.c) 

=> CF = CE = EF => CEF là tam giác đều

5 tháng 7 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có:

∠ (BAD) + ∠(ADC) = 180 0  (hai góc trong cùng phía bù nhau)

⇒  ∠ (ADC) =  180 0  -  ∠ (BAD) =  180 0  – α

∠ (CDF) =  ∠ (ADC) +  ∠ (ADF) =  180 0  - α 2 + 60 0 = 240 0 - α

Suy ra:  ∠ (CDF) =  ∠ (EAF)

Xét  ∆ AEF và ∆ DCF: AF = DF ( vì  ∆ ADF đều)

AE = DC (vì cùng bằng AB)

∠ (CDF) =  ∠ (EAF) (chứng minh trên)

Do đó:  ∆ AEF =  ∆ DCF (c.g.c) ⇒ EF = CF (1)

∠ (CBE) =  ∠ (ABC) + 60 0 = 180 0 - α + 60 0 = 240 0 - α

Xét ΔBCE và ΔDFC: BE = CD ( vì cùng bằng AB)

∠ (CBE) =  ∠ (CDF) = 240 0 - α

BC = DF (vì cùng bằng AD)

Do đó  ∆ BCE =  ∆ DFC (c.g.c) ⇒ CE = CF (2)

Từ (1) và (2) suy ra: EF = CF = CE

Vậy  ∆  ECF đều.

26 tháng 8 2016

a) Tính góc EAF 
EAF^ = 360* - (DAF^ + BAD^ + BAE^) = 360* - (60* + a + 60*) = 240* - a (1) 

b) Chứng minh rằng tam giác CEF là tam giác đều 
ABC^ = ADC^ = 180* - a 
=> CDF^ = ADC^ + ADF^ = 180* - a + 60* = 240* - a (2) 
CBE^ = ABC^ + ABE^ = 180* - a + 60* = 240* - a (3) 
AF = DF = AD = BC (4) 
CD = AB = BE = AE (5) 
(1) (2) (3) (4) và (5) => Δ CDF = ΔEBC = Δ EAF ( c.g.c) 
=> CF = CE = EF => CEF là tam giác đều

20 tháng 11 2018

a,tính góc EAF

EAF^=360* - ( DAF^+BAD^+BAE^)=360*-(60*+a+60*)=240*-a(1)

b,chứng minh rằng tam giác CÈ là tam giác đều 

ABC^=ADC^+ADF^=180*-a+60*=240*-a(2)

CBE^=ABC^+ABE^=180*-a+60*=240*-a(3)

AF=DF=AD=BC(4)

CD=AB=BE=AE(5)

(1) (2) (3) (4) và (5) => tam giác CDF=tam giác EAF (c.g.c)

=> CF=CE=EF=>CÈ là tam giác đều