K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2019

Vì ABCD.A’B’C’D’ là hình hộp chữ nhật nên tứ giác ABCD ; DCC’D’ và CBB’C’ là hình chữ nhật

Suy ra: BC = AD = 6cm; CC’ = DD’ = 8cm

Áp dụng đinh lí Py ta go vào tam giác BCC’ ta có:

B C ’ 2 = B C 2 + C C ’ 2 = 6 2 + 8 2 = 100

Suy ra: BC’ = 10cm

Chọn đáp án A

a: Xét ΔABC vuông tại A và ΔDEF vuông tại D có 

AB/DE=AC/DF

Do đó: ΔABC\(\sim\)ΔDEF

b: \(\dfrac{C_{ABC}}{C_{DEF}}=\dfrac{AB}{DE}=\dfrac{2}{3}\)

16 tháng 9 2023

limdim

Bài 1: 

a) Xét ΔABC có

AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{AB}{BD}=\dfrac{AC}{CD}\)

\(\Leftrightarrow\dfrac{6}{5}=\dfrac{12}{CD}\)

hay CD=10(cm)

Ta có: BD+CD=BC(D nằm giữa B và C)

nên BC=10+5=15(cm)

Vậy: DC=10cm; BC=15cm

6 tháng 4 2018

Thể tích của hình hộp chữ nhật là

Bài tập: Thể tích của hình hộp chữ nhật | Lý thuyết và Bài tập Toán 8 có đáp án

Suy ra: AA’ = BB’ =5cm

Chọn đáp án A

Bài 1: Cho hình chữ nhật ABCD có AB = 8cm, BC = 6cm. Vẽ đường cao AH của AADD . a) Tính DB b) Chứng minh AADH 24BDA c) Chứng minh AD = DHDB d) Chứng minh AAHB OABCD e) Tính độ dài đoạn thẳng DH, AH. Bài 2: Cho AABC vuông ở A, có AB = 6cm, AC = 8cm. Vẽ đường cao AH. a) Tính BC b) Chứng minh A ABC S AHBA c) Chứng minh AB = BH BC. Tính BH, HC d) Vẽ phân giác AD của góc A (D eBC). Tính DB Bài 3: Cho hình thang cân ABCD có AB // DC và AB< DC, đường chéo...
Đọc tiếp

Bài 1: Cho hình chữ nhật ABCD có AB = 8cm, BC = 6cm. Vẽ đường cao AH của AADD . a) Tính DB b) Chứng minh AADH 24BDA c) Chứng minh AD = DHDB d) Chứng minh AAHB OABCD e) Tính độ dài đoạn thẳng DH, AH. Bài 2: Cho AABC vuông ở A, có AB = 6cm, AC = 8cm. Vẽ đường cao AH. a) Tính BC b) Chứng minh A ABC S AHBA c) Chứng minh AB = BH BC. Tính BH, HC d) Vẽ phân giác AD của góc A (D eBC). Tính DB Bài 3: Cho hình thang cân ABCD có AB // DC và AB< DC, đường chéo BD vuông góc với cạnh bên BC. Vẽ đường cao AH, AK. a) Chứng minh ABDC O AHBC

b) Chứng minh BC = HC.DC | c) Chứng minh AKD 2ABHC.

c) Cho BC = 15cm, DC = 25 cm. Tính HC , HD. | d) Tính diện tích hình thang ABCD. | Bài 4: Cho AABC, các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường

vuông góc với AC tại C cắt nhau ở K.Gọi M là trung điểm của BC. | a) Chứng minh AADB 2AAEC.

b) Chứng minh HE.HC=HD.HB c) Chứng minh H, K, M thẳng hàng d) AABC phải có điều kiện gì thì tứ giác BHCK là hình thoi? Hình chữ nhật?

 

1

Bài 2:

a: BC=10cm

b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó:ΔABC\(\sim\)ΔHBA

c: Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

=>BH=36/10=3,6(cm)

=>CH=6,4(cm)

Chọn B

BD=√AB2+AD2=√62+82=10  (cm)

BE=√AB2+AE2=√62+62=6√2 (cm)

ED=√AD2+AE2=√82+62=10)

⇒⇒ Chu vi ΔBED=BD+BE+ED=20+6√2≈28,49 (cm)

a: Sxq=(12+9)*2*10=20*21=420cm2

Sxq=420+2*12*9=636cm2

V=12*9*10=1080cm3

b: Xét tứ giác BIFO có

BI//FO

BI=FO

=>BIFO là hình bình hành

=>IO//BF//DH

=>IO//(BFGC); IO//(AEHD)

24 tháng 10

cho hinh hop chu nhat ABCD.EFGH                                                       CUU TUI CUU TUI