Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath
Bài 1 . Đã gửi rồi nhé .
Bài 2 . \(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\) ⇔ \(\left(a+d\right)^2-\left(b+c\right)^2=\left(a-d\right)^2-\left(b-c\right)^2\)
⇔ \(a^2+2ad+d^2-b^2-2bc-c^2=a^2-2ad+d^2-b^2+2bc-c^2\)
⇔ \(4ad=4bc\)
⇔ \(\dfrac{a}{c}=\dfrac{b}{d}\left(Đpcm\right)\)
b, Ta có \(m=a+b+c\)
\(\Rightarrow am+bc=a\left(a+b+c\right)+bc=a\left(a+b\right)+ac+bc=\left(a+c\right)\left(a+b\right)\)
CMTT \(bm+ac=\left(b+c\right)\left(b+a\right)\);\(cm+ab=\left(c+a\right)\left(c+b\right)\)
Suy ra \(\left(am+bc\right)\left(bm+ac\right)\left(cm+ab\right)=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)
a) Ta có:
\(a-b=c+d\)
\(\Rightarrow a-b-c-d=0\)
\(\Rightarrow2a\left(a-b-c-d\right)=0\)
\(\Rightarrow2a^2-2ab-2ac-2ad=0\)
Do đó:
\(a^2+b^2+c^2+d^2\)
\(=a^2+b^2+c^2+d^2+2a^2-2ab-2ac-2ad\)
\(=\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(a^2-2ad+d^2\right)\)
\(=\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2\)
Vậy với các số nguyên a, b, c, d thỏa mãn a - b = c + d thì a2 + b2 + c2 + d2 luôn là tổng của ba số chính phương
b) Ta có:
\(a+b+c+d=0\)
\(\Rightarrow a+b+c=-d\)
\(\Rightarrow a^2+ab+ac=-da\)
\(\Rightarrow bc-da=a^2+ab+ac+bc\)
\(\Rightarrow bc-da=a\left(a+b\right)+c\left(a+b\right)\)
\(\Rightarrow bc-da=\left(a+b\right)\left(a+c\right)\left(1\right)\)
Ta lại có:
\(a+b+c+d=0\)
\(\Rightarrow a+b+c=-d\)
\(\Rightarrow ac+bc+c^2=-dc\)
\(\Rightarrow ab-cd=ac+bc+c^2+ab\)
\(\Rightarrow ab-cd=c\left(a+c\right)+b\left(a+c\right)\)
\(\Rightarrow ab-cd=\left(a+c\right)\left(b+c\right)\left(2\right)\)
Ta lại có:
\(a+b+c+d=0\)
\(\Rightarrow a+b+c=-d\)
\(\Rightarrow ab+b^2+bc=-db\)
\(\Rightarrow ca-db=ca+ab+b^2+bc\)
\(\Rightarrow ca-db=a\left(b+c\right)+b\left(b+c\right)\)
\(\Rightarrow ca-db=\left(b+c\right)\left(a+b\right)\left(3\right)\)
Thay (1) , (2) và (3) vào biểu thức ( ab - cd )( bc - da )( ca - db ) ta được:
\(\left(ab-cd\right)\left(bc-da\right)\left(ca-db\right)\)
\(=\left(a+c\right)\left(b+c\right)\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\)
\(=\left(a+c\right)^2.\left(b+c\right)^2.\left(a+b\right)^2\)
\(=\left[\left(a+c\right)\left(b+c\right)\left(a+b\right)\right]^2\)
Vậy với các số nguyên a, b, c, d thỏa mãn a + b + c + d = 0 thì ( ab - cd )( bc - da )( ca - db ) là số chính phương
@Yukru Cậu giỏi quá! Cảm ơn cậu nhiều. Chắc cậu năm nay 8 lên 9 rồi nhỉ?
Đặt \(a^3+b=c^3+d=m^3+n=k\)
\(a^3\equiv a\left(mod3\right)\Rightarrow a^3+b\equiv a+b\left(mod3\right)\)
\(\Rightarrow a+b\equiv k\left(mod3\right)\)
Tương tự: \(c+d\equiv k\left(mod3\right)\) ; \(m+n\equiv k\left(mod3\right)\)
Lại có:
\(b^3\equiv b\left(mod3\right)\Rightarrow b^3+a\equiv a+b\left(mod3\right)\)
Tương tự ...
\(\Rightarrow Q\equiv a+b+c+d+m+n\left(mod3\right)\)
\(\Rightarrow Q\equiv k+k+k\left(mod3\right)\)
\(\Rightarrow Q\equiv3k\left(mod3\right)\)
\(\Rightarrow Q⋮3\)
Mà hiển nhiên Q>3 nên Q là hợp số
Anh giúp em ạ! Không biết là ra 46666200 hay là 9333240 ạ anh, em đang bị rối 1 chỗ anh giúp em xong rồi em hỏi anh ạ
https://hoc24.vn/cau-hoi/goi-s-la-tap-hop-tat-ca-cac-so-tu-nhien-gom-5-chu-so-doi-mot-khac-nhau-duoc-lap-tu-cac-chu-so-5-6-7-8-9-tinh-tong-tat-cac-so-thuoc-tap-s.7818057294758
Ta có :
\(\dfrac{a}{b}< \dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{b}-\dfrac{c}{d}< 0\)
\(\Rightarrow\dfrac{ad-bc}{bd}< 0\)
Mà \(bd>0\) (do b,d dương)
\(\Rightarrow\left\{{}\begin{matrix}ad-bc< 0\\bd>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}ad< bc\\bd>0\end{matrix}\right.\)
\(\Rightarrow\dfrac{bd}{ad}>\dfrac{bd}{bc}\)
\(\Rightarrow\dfrac{b}{a}>\dfrac{d}{c}\)
\(\rightarrowđpcm\)
a) Ta có ABB’A’ là hình chữ nhật nên: AA’ // BB’ và AA’ = BB’
Tương tự ADD’A’ là hình chữ nhật:
AA’ // DD’ và AA’ = DD’
=> BB’ // DD’ và BB’ = DD’
Do đó BB’D’D là hình bình hành
=>BD // B’D’
b) BB’C’C là hình chữ nhật: BB’ // CC’ mà BB’ không thuộc mp(CC’D’D) và CC’ thuộc mp(CC’D’D) nên BB’ // mp(CC’D’D)
B’D’ // BD (cmt) mà B’D’ không thuộc mp (ABCD) và BD thuộc mp(ABCD) nên B’D’ // mp(ABCD)
c) Ta có: AB // CD (ABCD là hình chữ nhật)
AA’ // DD’ (ADD’A’ là hình chữ nhật)
Mà mp(ABB’A’) chứa hai đường thẳng cắt nhau AB và AA’ và mp(DCC’D’) chứa hai đường thẳng cắt nhau CD và DD’ => mp(ABB’A’) // mp(DCC’D’)