Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D
+) Gọi
Ta có M là trung điểm của AB
=> M là trung điểm EB'
=> N là trung điểm của ED' và AD
+) Ta có
Gọi O là tâm đáy \(\Rightarrow SO\perp\left(ABCD\right)\Rightarrow\widehat{SMO}=60^0\)
\(\Rightarrow SO=OM.tan60^0=\dfrac{a\sqrt{3}}{2}\)
Trong mp (ABCD), kéo dài AM và CD cắt nhau tại E
Trong mp (SCD), nối NE cắt SC tại F
Theo định lý talet: \(\dfrac{EC}{ED}=\dfrac{MC}{AD}=\dfrac{1}{2}\Rightarrow\left\{{}\begin{matrix}EC=a\\ED=2a\end{matrix}\right.\)
Áp dụng định lý Menelaus cho tam giác SCD:
\(\dfrac{FS}{FC}.\dfrac{CE}{ED}.\dfrac{DN}{NS}=1\Leftrightarrow\dfrac{FS}{FC}.\dfrac{1}{2}.1=1\Rightarrow\dfrac{FS}{FC}=2\)
\(\Rightarrow\dfrac{FC}{SC}=\dfrac{1}{3}\Rightarrow d\left(F;\left(ABCD\right)\right)=\dfrac{1}{3}d\left(S;\left(ABCD\right)\right)=\dfrac{1}{3}SO=\dfrac{a\sqrt{3}}{6}\)
\(ND=\dfrac{1}{2}SD\Rightarrow d\left(N;\left(ABCD\right)\right)=\dfrac{1}{2}d\left(S;\left(ABCD\right)\right)=\dfrac{1}{2}SO=\dfrac{a\sqrt{3}}{4}\)
\(\Rightarrow V_{NADMFC}=V_{NADE}-V_{FMCE}=\dfrac{1}{3}.\dfrac{a\sqrt{3}}{4}.\dfrac{1}{2}a.2a-\dfrac{1}{3}.\dfrac{a\sqrt{3}}{6}.\dfrac{1}{2}.a.\dfrac{a}{2}=\dfrac{5\sqrt{3}}{72}a^2\)
\(\Rightarrow V_1=V_{SABCD}-V_{NADMFC}=....\)
Phương pháp:
- Dựng thiết diện cắt bởi (AB 'M) với hình hộp.
- Sử dụng phương pháp cộng trừ thể tích khối đa diện suy ra các tỉ số thể tích.
Cách giải:
Dựng thiết diện cắt bởi (AB 'M) với hình hộp như hình vẽ.
Ta có:
Đặt thể tích
Mà
Lại có
Đáp án A
Đáp án D
Gọi M = (D'E) ∩ (DA), N = (D'F) ∩ (DC). Dễ thấy MN đi qua B, các hình chóp E.AMB và F.CNB có diện tích đáy và chiều cao bằng nhau. Áp dụng công thức (7) ta có:
Áp dụng ví dụ 9, ta có:
Suy ra V(H) = V(H'). Do đó k = 1.
Đáp án là C
Nhận xét: B'NDM là hình bình hành (B'N = DM, B'N//DM)
=> MN ∩ B'D = O là trung điểm của mỗi đoạn nên O cũng là trung điểm của đường chéo A'C.
Vậy thiết diện tạo bởi mặt (A'MN) và hình chóp là hình bình hành A'NCM.
Ta có:
Cách 1:
Thể tích phần chứa C' là
Cách 2: Áp dụng công thức tính nhanh
Gọi thể tích phần chứa C' là V'.
Ta có:
Cách 3: Nhận xét nhanh do đa diện chứa C' đối xứng với đa diện không chứa C' qua O nên thể tích của hai phần này bằng nhau, suy ra
Đáp án là C
Ta có
Khi đó thể tích khối hộp
Ta có giao tuyến của (A'MN) và (C'D'DC) là C'M
Ta có giao tuyến của (A'MN) và (B'C'CB) là CN
Suy ra AMC'N là hình bình hành
Gọi O là tâm hình hộp. Ta có phép đối xứng tâm O biến hình đa diện C'CDMBAN thành hình đa diện AA'B'ND'C'M