K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2017

a b c d o e f h k

gọi o là giao của 2 đường chéo ac và bd 

xét hbh abcd có 2 đường cháo ac và bd mà 2 đường chéo này lại giao nha ở o (cmt)

=> o là trung điểm của ac ; o là trung điểm của bd

xét tam giác vuông aoe và tâm giác vuông bfc 

có góc aoe = góc foc (đối đỉnh )

ao=oc( o là ủng điểm của oc chứng minh rên)

-> tam giác vông aoe = tam giác vuông bfc( trường hợp cạnh huyền goác nhọn ) 

=> ae=cf (t/c....)

có ae=cf( cùng vuông góc với bd)

=> aecf là hình bình hành ( định nghĩa 3 : 1 cặp cạnh đối song song và = nhau)

b) tự vẽ hình nối thêm cho chính xác nhé

có abcd là hình bình hành (gt)

mà ac và bd giao tại o

-=> o là tủng điểm của ac (t/c...)

có ab//cd=> ak //hc

có ae//fc( vì aecf là hbh chứng minh câu a)=> ah // ck mà ak //ch

=> akch là hbh ( định nghĩa 1: các cặp cạnh đối song song )

có akch là hbh (cmt) có ac và hk là 2 đường chéo 

o là trung điểm của ac (cmt)

=> o là tủng điểm của hk => hk đi qua o mà ac và bd cũng đi qua o (câu a)

=> hk ,ac và bd cùng đi qua o 

=> hk ,bd và ac đồng quy tại o ,

ko hiểu hoặc mk sai  chỗ nào ib hộ mk nhé 

7 tháng 10 2017

sai de nhe ban: AB>AD nhe!

minh trong bai doi H thanh diem K nhe!

a: Xét ΔAEC vuông tại E và ΔAHB vuông tại H có

góc EAC chung

=>ΔAEC đồng dạng với ΔAHB

=>AE/AH=AC/AB

=>AE*AB=AC*AH

b: Xét ΔCBH vuông tại H và ΔACF vuông tại F có

góc BCH=góc CAF

=>ΔCBH đồng dạng với ΔACF

 

a: AE\(\perp\)BD

CF\(\perp\)BD

Do đó: AE//CF

Xét ΔAED vuông tại E và ΔCFB vuông tại F có

AD=CB

\(\widehat{ADE}=\widehat{CBF}\)

Do đó: ΔAED=ΔCFB

=>AE=CF

Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: AE//CF

E\(\in\)AH

F\(\in\)CK

Do đó: AH//CK

AB//CD

K\(\in\)AB

H\(\in\)CD

Do đó: AK//CH

Xét tứ giác AHCK có

AH//CK

AK//CH

Do đó: AHCK là hình bình hành

=>AC cắt HK tại trung điểm của mỗi đường(1)

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra AC,HK,BD đồng quy

29 tháng 6 2019

a) Xét hai tam giác vuông ADH và BCK có:

AD = BC (tính chất hình bình hành)

B1ˆ=D2ˆB1^=D2^ (slt, AB // CD)

Vậy: ΔADH=ΔBCK(ch−gn)ΔADH=ΔBCK(ch−gn)

⇒⇒ AH = CK (1)

Chứng minh tương tự ta được: ΔABK=ΔCDH(ch−gn)ΔABK=ΔCDH(ch−gn)

⇒⇒ AK = CH (2)

Từ (1) và (2) suy ra: AHCK là hình bình hành

b) O là giao điểm của AC và BD thì O là trung điểm của AC (tính chất đường chéo hình bình hành)

AHCK là hình bình hành (cmt) ⇒⇒ HK đi qua trung điểm O của đường chéo AC

Vậy H, O, K thẳng hàng.

A B D C O H K

P.s:Mìh vẽ hình hơi xấu ;))