Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ban tu ve hinh nha
a) Xet \(\Delta BHC\perp.tai.H\) co
\(\hept{\begin{cases}K.la.trung.diem.BH\\N.la.trung.diem.HC\end{cases}\Rightarrow KN.la.duong.trung.binh}\)
=> KN // BC va KN=1/2 BC
Xet hinh chu nhat ABCD co BC//,=AD lai co M la trung diem AD => \(AM=\frac{1}{2}AD=\frac{1}{2}BC=KN\) (1)
ma \(\hept{\begin{cases}M\in AD\\AD//BC\\KN//BC\end{cases}\Rightarrow AM//KN}\) (2)
Tu (1) va (2) suy ra AMNK la hinh binh hanh
b) theo phan a ta co \(AK//MN\) (3)
co \(\hept{\begin{cases}KN//BC\left(cmt\right)\\BC\perp AB\left(ABCD.la.hinh.chu.nhat\right)\end{cases}=>KN\perp AB\left(quan.he.tu.vuong.goc.den.song.song\right)}\)
Xet \(\Delta ABN\) co \(\hept{\begin{cases}BH\perp AN\left(gt\right)\\KN\perp AB\left(cmt\right)\end{cases}\Rightarrow K.la.truc}.tam.\Delta ABN\)
Suy ra \(AK\perp BN\) (3)
Tu (3) va (4) ta co \(MN\perp BN\) DPCM
Chuc ban hoc tot
Tài trợ cái hình:
A B C D H M N K
Còn ý tưởng thì giống Upin & Ipin
a: Xét ΔHAB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình
=>MN//AB và MN=AB/2
=>MN//KC và MN=KC
=>NCKM là hình bình hành
b; Xét ΔBMC có
BH là đường cao
MN là đường cao
BH cắt MN tại N
DO đó:N là trực tâm
=>CN vuông góc với BM
=>BM vuông góc với MK
hay góc BMK=90 độ