K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2023

a: loading...

b: Xét ΔBMC có

BK,CI là các đường cao

BK cắt CI tại E

Do đó: E là trực tâm của ΔBMC

=>ME\(\perp\)BC

mà AB\(\perp\)BC

nên ME//AB

Xét ΔKAB có

M là trung điểm của KA

ME//AB

Do đó: E là trung điểm của BK

=>BE=EK

c: Xét ΔKAB có

M,E lần lượt là trung điểm của KA,KB

=>ME là đường trung bình của ΔKAB

=>\(ME=\dfrac{AB}{2}\)

mà AB=CD(ABCD là hình chữ nhật)

và \(NC=\dfrac{CD}{2}\)(N là trung điểm của CD)

nên ME=NC

Ta có: ME//AB

CD//AB

Do đó: ME//CD

Xét tứ giác MNCE có

ME//CN

ME=CN

Do đó: MNCE là hình bình hành

d: ta có: MNCE là hình bình hành

=>MN//CE

mà CE\(\perp\)MB

nên MN\(\perp\)MB

12 tháng 11 2023

Xét ΔBNC có

CI,BK là đường cao

CI cắt BK tại E

Do đó: E là trực tâm của ΔBNC

=>NE\(\perp\)BC

mà AB\(\perp\) BC

nên NE//AB

Xét ΔKAB có

N là trung điểm của KA

NE//AB
Do đó; E là trung điểm của BK

=>EB=EK

18 tháng 9 2016

A B C D H M K N E

Gọi N là trung điểm của BH

=> MN là đường trung ình của tam giác ABH

=>MN//AB, MN=1/2 AB

Mà AB=CD và AB//CD

=>MN//CD, MN = 1/2 CD

=> MNCK là hình bình hành

=> NC//MK (1)

Ta có: MN //AB

AB vuông góc với BC

=> MN vuông góc với BC tại E (E thuộc BC)

Tam giác BCM có BH và ME là đường cao và chúng cắt nhau tại N

=> CN vuông góc với BM (2)

Từ (1) và (2) suy ra:

BM vuông góc với MK (đpcm)

 

2 tháng 11 2021

tuyệt

26 tháng 5 2017


Từ K, D hạ đường vuông góc KN, DP xuống AC 

Xét tam giác BMK, ta có: 

BK^2=BC^2+CK^2 = BC^2+CD^2/4 (1) 
BM^2=BH^2+MH^2 = BH^2+ AH^2/4 (2) 
MK^2=MN^2+NK^2=MN^2+BH^2/4 (3) 

Ta có MN= MH-NH = AH/2-NH=AH/2-(CN-CH)=AH/2-AH/2+CH =CH (Do CN=CP/2=AH/2) 

=>MN =CH, thay vào (3) 
=> MK^2 = CH^2 +BH^2/4 (4) 

Để c/m ^BMK=90o, ta c/m BK^2 =BM^2 +MK^2 (*) 

Thay (1), (2), (4) vào (*), , ta được 

BC^2+CD^2/4= BH^2+AH^2/4+CH^2+BH^2/4 (**) 
Do BC^2= BH^2+CH^2 

(**) => CD^2/4= AH^2/4+BH^2/4 
=> CD^2=AH^2+BH^2 
=> AB^2 = AH^2+BH^2 , đúng do tam giác AHB vuông tại H 

Vậy ^BMK =90o

hay BMvuông góc vớ Mk