K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có

góc HDA chung

=>ΔHAD đồng dạng với ΔABD

b: ΔABD vuông tại A có AH là đường cao

nên DA^2=DH*DB

c: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

DH=6^2/10=3,6cm

29 tháng 4 2018

-(a+b)^3=-(1)^3=-1 cả hai đều đúng

8 tháng 5 2018

a)Xét \(\Delta ABC\)\(\Delta HBA\)có:

\(\widehat{BAC}=\widehat{BHA}\)(=\(90^0\))

\(\widehat{B}\)chung

=>\(\Delta ABC\)~\(\Delta HBA\)(g.g)

=>\(\dfrac{AB}{HB}=\dfrac{BC}{AB}\)

=>\(AB^2=HB.BC\) A B C H D

Bài 2: 

a: Xét ΔABE và ΔACF có

góc ABE=góc ACF

AB=AC

góc A chung

Do đó: ΔABE=ΔACF

Suy ra: AE=AF

b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC

=>BFEC là hình thang

mà CF=BE

nên BFEC là hình thang cân

c: Xét ΔFEB có góc FEB=góc FBE

nên ΔFEB cân tại F

=>FE=FB=EC

22 tháng 3 2017

A B C D H 8cm 6cm a/

Xét ∆AHB và ∆BCD có:

góc ABD = góc BDC (so le trong AB//CD)

góc AHD = góc BCD (=90o)

Nên ∆AHB ~ ∆BCD (g.g)

b/

Vì ∆AHB ~ ∆BCD (câu a)

Nên \(\dfrac{AD}{DH}=\dfrac{DB}{BC}\)

Mà AD = BC (2 cạnh đối trong hình chữ nhật)

Do vậy \(\dfrac{AD}{DH}=\dfrac{DB}{AD}\Leftrightarrow AD^2=DH.DB\)

c/

Áp dụng định lí Py-ta-go vào tam giác vuông BCD ta được:

\(BD^2=BC^2+CD^2\Rightarrow BD=\sqrt[]{8^2+6^2}=10\left(cm\right)\)

Vì ∆AHB ~ ∆BCD (câu a) nên \(\dfrac{AH}{AD}=\dfrac{DC}{DB}\Leftrightarrow AH=\dfrac{AD.DC}{DB}=\dfrac{6.8}{10}=4,8\left(cm\right)\)

Áp dụng định lí Py-ta-go vào tam giác vuông AHD ta được:

\(DH=\sqrt[]{AD^2-AH^2}=\sqrt[]{36-23,04}\)=\(\sqrt[]{12,96}\)= 3,6(cm)

Vậy DH=3,6cm

AH=4,8cm

25 tháng 4 2020

hay quá

5 tháng 5 2023

a) Xét ΔHAD và ΔABD ta có:

\(\widehat{D}\) chung

\(\widehat{DAB}=\widehat{DHA}=90^0\)

⇒ΔHAD ∼ ΔABD (g.g)(1)

b) Xét ΔHBA và ΔABD ta có:

\(\widehat{B}\) chung

\(\widehat{AHB}=\widehat{DAB}=90^0\)

→ΔHBA ∼ ΔABD (g.g)(2)

Từ (1) và (2) →ΔHAD∼ΔHBA

\(\rightarrow\dfrac{AD}{DH}=\dfrac{HB}{AD}\\ \rightarrow AD.AD=DH.HB\\\Rightarrow AD^2=DH.HB\)

c) Xét ΔABD vuông tại A ta có:

\(BD^2=AB^2+AD^2\)

         \(=8^2+6^2\)

         \(=100\)

\(\Rightarrow BD=\sqrt{100}=10\left(cm\right)\)

Vì ΔΔHAD ∼ ΔABD (cmt)

\(\rightarrow\dfrac{AD}{DH}=\dfrac{AB}{AH}=\dfrac{BD}{AD}hay\dfrac{6}{DH}=\dfrac{8}{AH}=\dfrac{10}{6}=\dfrac{5}{3}\\ \Rightarrow DH=\dfrac{6.3}{5}=3,6\left(cm\right)\\ \Rightarrow AH=\dfrac{8.3}{5}=4,8\left(cm\right)\)

5 tháng 5 2023

Hình vẽ:

H 6cm D C A B 8cm

16 tháng 2 2021

100 nha