Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có
góc HDA chung
=>ΔHAD đồng dạng với ΔABD
b: ΔABD vuông tại A có AH là đường cao
nên DA^2=DH*DB
c: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
DH=6^2/10=3,6cm
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
A B C D H 8cm 6cm a/
Xét ∆AHB và ∆BCD có:
góc ABD = góc BDC (so le trong AB//CD)
góc AHD = góc BCD (=90o)
Nên ∆AHB ~ ∆BCD (g.g)
b/
Vì ∆AHB ~ ∆BCD (câu a)
Nên \(\dfrac{AD}{DH}=\dfrac{DB}{BC}\)
Mà AD = BC (2 cạnh đối trong hình chữ nhật)
Do vậy \(\dfrac{AD}{DH}=\dfrac{DB}{AD}\Leftrightarrow AD^2=DH.DB\)
c/
Áp dụng định lí Py-ta-go vào tam giác vuông BCD ta được:
\(BD^2=BC^2+CD^2\Rightarrow BD=\sqrt[]{8^2+6^2}=10\left(cm\right)\)
Vì ∆AHB ~ ∆BCD (câu a) nên \(\dfrac{AH}{AD}=\dfrac{DC}{DB}\Leftrightarrow AH=\dfrac{AD.DC}{DB}=\dfrac{6.8}{10}=4,8\left(cm\right)\)
Áp dụng định lí Py-ta-go vào tam giác vuông AHD ta được:
\(DH=\sqrt[]{AD^2-AH^2}=\sqrt[]{36-23,04}\)=\(\sqrt[]{12,96}\)= 3,6(cm)
Vậy DH=3,6cm
AH=4,8cm
a) Xét ΔHAD và ΔABD ta có:
\(\widehat{D}\) chung
\(\widehat{DAB}=\widehat{DHA}=90^0\)
⇒ΔHAD ∼ ΔABD (g.g)(1)
b) Xét ΔHBA và ΔABD ta có:
\(\widehat{B}\) chung
\(\widehat{AHB}=\widehat{DAB}=90^0\)
→ΔHBA ∼ ΔABD (g.g)(2)
Từ (1) và (2) →ΔHAD∼ΔHBA
\(\rightarrow\dfrac{AD}{DH}=\dfrac{HB}{AD}\\ \rightarrow AD.AD=DH.HB\\\Rightarrow AD^2=DH.HB\)
c) Xét ΔABD vuông tại A ta có:
\(BD^2=AB^2+AD^2\)
\(=8^2+6^2\)
\(=100\)
\(\Rightarrow BD=\sqrt{100}=10\left(cm\right)\)
Vì ΔΔHAD ∼ ΔABD (cmt)
\(\rightarrow\dfrac{AD}{DH}=\dfrac{AB}{AH}=\dfrac{BD}{AD}hay\dfrac{6}{DH}=\dfrac{8}{AH}=\dfrac{10}{6}=\dfrac{5}{3}\\ \Rightarrow DH=\dfrac{6.3}{5}=3,6\left(cm\right)\\ \Rightarrow AH=\dfrac{8.3}{5}=4,8\left(cm\right)\)