K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2019

A B C D E F G H a) Xét ΔABD có:\(\dfrac{AE}{AB}=\dfrac{AH}{AD}\)

⇒ HE//DB (đl Talet đảo) (1)

Xét ΔBCD có:\(\dfrac{BF}{BC}=\dfrac{CG}{CD}\)

⇒ FG//BD (đl Talet đảo) (2)

Từ (1)(2)⇒HE//FG (*)

Xét ΔADC có: \(\dfrac{AH}{AD}=\dfrac{DG}{DC}\)

⇒ HG//AC (đl Talet đảo) (3)

Xét ΔABC có: \(\dfrac{AE}{AB}=\dfrac{BF}{BC}\)

⇒ EF//AC (đl Talet đảo) (4)

Từ (3)(4)⇒EF//HG (**)

Từ (*)(**)⇒ Tứ giác EFGH là hbh.

b) Câu này mk ko hiểu đề bài cho lắm

24 tháng 2 2020

A B C D E F G H

a) Xét tam giác  ADB có: 

\(\frac{AE}{AB}=\frac{AH}{AD}\left(gt\right)\)

\(\Rightarrow HE//DB\left(1\right)\)( định lý Ta-let đảo )

Xét tam giác CDB có:

\(\frac{CF}{CB}=\frac{CG}{CD}\left(gt\right)\)

\(\Rightarrow GF//BD\left(2\right)\)

Từ (1) và (2) \(\Rightarrow HE//GF\)

CMTT\(HG//EF\)( cùng // AC)

Xét tứ giác EFGH có:

\(\hept{\begin{cases}HE//GF\left(cmt\right)\\HG//EF\left(cmt\right)\end{cases}\Rightarrow EFGH}\)là hình bình hành (dhnb)

b) 

Đặt\(\frac{AE}{AB}=\frac{AH}{AD}=\frac{CF}{CB}=\frac{CG}{CD}=k\)

Xét tam giác ADB có:

\(HE//BD\left(gt\right)\)

\(\Rightarrow\frac{HE}{BD}=\frac{AE}{AB}\)( hệ quả của định lý Ta-let)

\(\Rightarrow\frac{HE}{BD}=k\)( vì \(\frac{AE}{AB}=k\))

\(\Rightarrow HE=k.BD\)

Xét tam giác ABC có:

\(EF//AC\left(cmt\right)\)

\(\Rightarrow\frac{EF}{AC}=\frac{BE}{BA}\)( hệ quả của định lý Ta-let)

\(\Rightarrow\frac{EF}{AC}=\frac{AB-AE}{BA}=1-k\)

\(\Rightarrow EF=\left(1-k\right)AC\)

\(P_{EFGH}=2\left(HE+EF\right)\)

\(=2\left[k.BD+\left(1-k\right)AC\right]\)

\(=2AC\)không đổi  ( AC=BD do ABCD là hình chữ nhật )

Vậy chu vi của hbh EFGH có giá trị không đổi 

25 tháng 2 2020

bạn bảo châu ơi

26 tháng 12 2021

Câu 12. Cho hình vuông ABCD. Trên các cạnh AB, BC, CD, DA lần lượt lấy các điểm E, F, G, H sao cho AE = BF = CG = DH. Tứ giác EFGH là hình gì?

A. Hình chữ nhật. B. Hình thoi. C. Hình bình hành.

Câu 13. Cho hình vuông có chu vi 28 cm. Độ dài cạnh hình vuông là:

D. Hình vuông.

A. 4cm. B. 7cm. C. 14cm.

Câu 14. Cho hình vuông có chu vi 32 cm. Độ dài cạnh hình vuông là:

D. 8cm.

A. 10cm. B. 15cm. C. 5cm.

D. 8cm.

26 tháng 12 2021

Câu 12. Cho hình vuông ABCD. Trên các cạnh AB, BC, CD, DA lần lượt lấy các điểm E, F, G, H sao cho AE = BF = CG = DH. Tứ giác EFGH là hình gì?

A. Hình chữ nhật.     B. Hình thoi.      C. Hình bình hành.            D. Hình vuông.

Câu 13. Cho hình vuông có chu vi 28 cm. Độ dài cạnh hình vuông là:

A. 4cm.                B. 7 cm.         C. 14cm.               D. 8cm.

Câu 14. Cho hình vuông có chu vi 32 cm. Độ dài cạnh hình vuông là:

A. 10cm.          B. 15cm.             C. 5cm.            D. 8 cm

a: AE=EB=AB/2

CG=GD=CD/2

mà AB=CD

nên AE=EB=CG=GD

AH=HD=AD/2

BF=FC=BC/2

mà AD=BC

nên AH=HD=BF=FC

b: Xét ΔAHE và ΔCFG có

AH=CF

góc A=góc C

AE=CG

=>ΔAHE=ΔCFG

c: Xét ΔEBF và ΔGDH có

EB=GD

góc B=góc D

BF=DH

=>ΔEBF=ΔGDH

=>GH=EF

d: Xét tứ giác EHGF có

EH=FG

EF=GH

=>EHGF là hình bình hành

6 tháng 9 2018

AE//CG, AE = CG nên AECG là hình bình hành ⇒ O là trung điểm của EG. Tương tự O là trung điểm của HF.

29 tháng 7 2016

A B C D E F G H

Xét \(\Delta ADB\):

\(AE=EB\left(gt\right)\)

\(HD=HA\left(gt\right)\)

\(\Rightarrow HE\)là đường trung binh cũa \(\Delta ADB\).

\(\Rightarrow HE\)//\(DB\)và \(HE=\frac{1}{2}DB\left(1\right)\)

Xét \(\Delta CDB:\)

\(FB=FC\left(gt\right)\)

\(GC=GD\left(gt\right)\)

\(\Rightarrow GF\) là dường trung bình của \(\Delta CBD\).

\(\Rightarrow GF\)//\(DB\)và \(GF=\frac{1}{2}DB\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow\)\(HE\)//\(GF\)và \(HE=GF\)

Vậy tứ giác \(EFGH\)là hình bình hành.

b) Xét \(\Delta AEH\)và \(\Delta EBF\):

\(AE=EB\left(gt\right)\)

Góc A = Góc B = 90o (ABCD là hình chữ nhật)

\(AD=BC\Rightarrow\frac{1}{2}AD=\frac{1}{2}BC\Rightarrow AH=BF\)

\(\Rightarrow\Delta AEH=\Delta EBF\left(c.g.c\right)\)

\(\Rightarrow HE=HF\)

mà tứ giác EFGH là hình bình hành.

Vậy hình bình hành \(EFGH\)là hình thoi.

3 tháng 9 2017

Ta cm theo qui tắc đường trung bình của tam giác là ra ngay 
Ta có E là trung điểm của AB,F là trung điểm của BC>>>EF=1/2AC.tuơng tự HG=1/2 AC>>>EF=HG 
CM ttự với cặp còn lại là ra thôi

31 tháng 12 2021

Chọn C

30 tháng 11 2023

a: AE+EB=AB

BF+FC=BC

CG+GD=CD

DH+HA=DA

mà AB=BC=CD=DA và AE=BF=CG=DH

nên EB=FC=GD=HA

Xét ΔEAH vuông tại A và ΔGCF vuông tại C có

EA=GC

AH=CF

Do đó: ΔEAH=ΔGCF

=>EH=GF

Xét ΔEBF vuông tại B và ΔGDH vuông tại D có

EB=GD

BF=DH

Do đó: ΔEBF=ΔGDH

=>EF=GH

Xét ΔEAH vuông tại A và ΔFBE vuông tại B có

EA=FB

AH=BE

Do đó: ΔEAH=ΔFBE

=>EH=EF và \(\widehat{AEH}=\widehat{BFE}\)

\(\widehat{AEH}+\widehat{HEF}+\widehat{BEF}=180^0\)

=>\(\widehat{BFE}+\widehat{BEF}+\widehat{HEF}=180^0\)

=>\(\widehat{HEF}+90^0=180^0\)

=>\(\widehat{HEF}=90^0\)

Xét tứ giác EHGF có

EF=GH

EH=GF

Do đó: EHGF là hình bình hành

Hình bình hành EHGF có EF=EH

nên EHGF là hình thoi

Hình thoi EHGF có \(\widehat{HEF}=90^0\)

nên EHGF là hình vuông

b: 

AH+HD=AD

=>AH+1=4

=>AH=3(cm)

ΔAEH vuông tại A

=>\(AE^2+AH^2=EH^2\)

=>\(EH^2=3^2+1^2=10\)

=>\(EH=\sqrt{10}\left(cm\right)\)

EHGF là hình vuông

=>\(S_{EHGF}=EH^2=10\left(cm^2\right)\)

17 tháng 12 2023

a: Xét ΔABC có

E,F lần lượt là trung điểm của BA,BC

=>EF là đường trung bình của ΔABC

=>EF//AC và \(EF=\dfrac{AC}{2}\)

Xét ΔCDA có

G,H lần lượt là trung điểm của CD,DA

=>GH là đường trung bình của ΔCDA

=>GH//AC và \(GH=\dfrac{AC}{2}\)

Ta có: EF//AC

GH//AC

Do đó: EF//GH

Ta có: \(EF=\dfrac{AC}{2}\)

\(GH=\dfrac{AC}{2}\)

Do đó: EF=GH

Xét tứ giác EFGH có

EF//GH

EF=GH

Do đó: EFGH là hình bình hành

b: Xét ΔBAD có

E,H lần lượt là trung điểm của AB,AD

=>EH là đường trung bình của ΔBAD

=>\(EH=\dfrac{BD}{2}\)

mà BD=AC

và EF=AC/2

nên EH=EF

Hình bình hành EFGH có EF=EH

nên EFGH là hình thoi

=>Chu vi hình thoi EFGH là: \(4\cdot EF=4\cdot\dfrac{AC}{2}=2\cdot AC=12\left(cm\right)\)