Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tâm đối xứng của hình bình hành ABCD là giao điểm O của các đường chéo AC và BD.
O còn là tâm đối xứng của các hình bình hành: AECG, EBGD, AHCF, DHBF.
a: AE=EB=AB/2
CG=GD=CD/2
mà AB=CD
nên AE=EB=CG=GD
AH=HD=AD/2
BF=FC=BC/2
mà AD=BC
nên AH=HD=BF=FC
b: Xét ΔAHE và ΔCFG có
AH=CF
góc A=góc C
AE=CG
=>ΔAHE=ΔCFG
c: Xét ΔEBF và ΔGDH có
EB=GD
góc B=góc D
BF=DH
=>ΔEBF=ΔGDH
=>GH=EF
d: Xét tứ giác EHGF có
EH=FG
EF=GH
=>EHGF là hình bình hành
a) Ta có: AE = CG (giả thiết) mà AB = CD (cạnh đối của hình bình hành ABCD), suy ra BE = DG.
△BEF và △DGH có:
BE = DG (chứng minh trên)
B^=D^ (hai góc đối của hình bình hành ABCD)
do đó: △BEF = △DGH (c.g.c), suy ra EF = GH.
Chứng minh tương tự, ta có: EH = FG.
Tứ giác EFGH có các cạnh đối bằng nhau nên là hình bình hành.
b) Tứ giác ABCD là hình bình hành ...
Cho hình bình hành ABCD tên các cạnh AB, BC, CD, DA lấy tương ứng các điểm E, F, G, H sao cho AE = CG; BF = DH. CMR:
a, EFGH là hình bình hành
b, Các đường thẳng AC; BD; EG; HF cắt nhau tại 1 điểm
a) Ta có: AE = CG (giả thiết) mà AB = CD (cạnh đối của hình bình hành ABCD), suy ra BE = DG.
△BEF và △DGH có:
BE = DG (chứng minh trên)
B^=D^ (hai góc đối của hình bình hành ABCD)
do đó: △BEF = △DGH (c.g.c), suy ra EF = GH.
Chứng minh tương tự, ta có: EH = FG.
Tứ giác EFGH có các cạnh đối bằng nhau nên là hình bình hành.
b) Tứ giác ABCD là hình bình hành ...
đúng không
kẻ BD
ta có HA=HD
EA=EB
=> HE là đg tb cuả tam giác ABD
=> HE//BD; HE=1/2BD (1)
cmtt ta có GF là đg tb cuả tam giác CBD
=> GF//BD;GF=1/2BD (2)
Từ (1)và (2)
=>HE=GF(=1/2BD); HE//GF(//BD)
=> EFGH là hình bình hành
AE//CG, AE = CG nên AECG là hình bình hành ⇒ O là trung điểm của EG. Tương tự O là trung điểm của HF.